International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 14 , ISSUE 4 ( October-December, 2024 ) > List of Articles

ORIGINAL RESEARCH

Efficacy of Polylactic-co-glycolic Acid Coated Melatonin Microspheres on Free Radical Injury and Osteoblastic Activity around Dental Implants: A Pilot Split-mouth Randomized Controlled Trial

Gokul Prasad, Shanmuganathan Natarajan, Uma Maheswari Mani, Anusha Sathiamurthy

Keywords : Alkaline phosphatase, Dental implant, Free radical injury, Heat, Malondialdehyde, Osteoblastic activity

Citation Information : Prasad G, Natarajan S, Mani UM, Sathiamurthy A. Efficacy of Polylactic-co-glycolic Acid Coated Melatonin Microspheres on Free Radical Injury and Osteoblastic Activity around Dental Implants: A Pilot Split-mouth Randomized Controlled Trial. Int J Prosthodont Restor Dent 2024; 14 (4):218-224.

DOI: 10.5005/jp-journals-10019-1480

License: CC BY-NC 4.0

Published Online: 30-12-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Purpose: To analyze the effects of sustained-release polylactic-co-glycolic acid (PLGA)-coated melatonin microspheres on free radical injury and osteoblastic activity around dental implants. Materials and methods: Ten patients with bilateral missing posterior teeth were recruited as study participants. Twenty edentulous sites were randomly allotted to receive PLGA-encapsulated melatonin and placebo microspheres, followed by the placement of implants of dimension 3.75 × 11.5 mm. Free radical injury was assessed through the expression of the specific marker malondialdehyde (MDA) on the 15th day after implant placement. Osteoblastic activity was assessed using alkaline phosphatase (ALP) on the 30th and 90th days after implant placement. An independent t-test was used to compare the experimental and control groups. Intragroup comparison was performed by using repeated-measures ANOVA (α = 0.05). Results: The analysis of the independent t-test revealed that, on the 15th day of implant placement, MDA values were lower at the experimental sites (6.010 ng/mL) than at the control sites (9.080 ng/mL), which was statistically significant (p < 0.05), indicating lesser free radical injury with melatonin-coated microspheres. The mean osteoblastic activity was higher in the experimental group than in the control group on the 30th and 90th days after implant placement (p < 0.001). Conclusion: Locally administered sustained-release PLGA-coated melatonin microspheres reduced free radical injury around dental implants on the 15th day. ALP levels indicated improved osteoblastic activity until the 90th day. In addition to combating free radical injury, melatonin also has a positive influence on early implant healing through improved osteoblastic activity.


PDF Share
  1. Buser D, Mericske-stern R, Pierre Bernard JP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997;8(3):161–172. DOI: 10.1034/j.1600-0501.1997.080302.x
  2. Carl E. Misch's Dental Implant Prosthetics, 4th Ed. Hong Kong: Elsevier Mosby; 2006. pp. 71–90.
  3. Chakraborty S, Moufti MA, Kheder W. The effect of dental implant drills materials on heat generation in osteotomy sites: a systematic review. Eur J Dent 2024;18(1):65–72. DOI: 10.1055/s-0043-1768472
  4. Cimini V, Perez A, Lombardi T, et al. Heat generated during dental implant placement: a scoping review. Appl Sci 2024;14(15):6773. DOI: 10.3390/app14156773
  5. Aquilanti L, Antognoli L, Rappelli G, et al. Heat generation during initial osteotomy for implant site preparation: an in vitro measurement study. J Maxillofac Oral Surg 2023;22(2):313–320. DOI: 10.1007/s12663-022-01800-8
  6. Qi F, Huang H, Wang M, et al. Applications of antioxidants in dental procedures. Antioxidants 2022;11(12):2492. DOI: 10.3390/antiox11122492
  7. Abdulhameed EA, Al-Rawi NH, Omar M, et al. Titanium dioxide dental implants surfaces related oxidative stress in bone remodeling: a systematic review. PeerJ 2022;10:e12951. DOI: 10.7717/peerj.12951
  8. Zhang B, Pan C, Feng C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep 2022;27(1):45–52. DOI: 10.1080/13510002.2022.2046423
  9. Chauhan CJ, Shah DN, Sutaria FB. Various bio-mechanical factors affecting heat generation during osteotomy preparation: a systematic review. Indian J Dent Res 2018;29(1):81–92. DOI: 10.4103/ijdr.IJDR_729_16
  10. Jayesh RS, Dhinakarsamy V. Osseointegration. J Pharm Bioallied Sci 2015;7(Suppl1):S226–S229. DOI: 10.4103/0975-7406.155917
  11. Ahmadpour E, Azizi B, Behradfar M, et al. Local delivery of melatonin along with bone grafts to improve osteogenesis. J Craniofac Surg 2024:10–97. DOI: 10.1097/SCS.0000000000010199
  12. Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006;38(3):313–316. DOI: 10.1016/j.biocel.2005.08.020
  13. Peyrot F, Ducrocq C. Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J Pineal Res 2008;45(3):235–246. DOI: 10.1111/j.1600-079X.2008.00580.x
  14. Roth JA, Kim BG, Lin WL, et al. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 1999;274(31): 22041–22047. DOI: 10.1074/jbc.274.31.22041
  15. Abdel-Rasoul MR, El-Domiaty SA, Kotry GS. The effect of local application of 5-methoxy-N- acetyltryptamine (melatonin) in the management of periodontal intrabony defects. Egypt Dent J 2019;58(4):3065–3071.
  16. Xiao L, Lin J, Chen R, et al. Sustained release of melatonin from GelMA liposomes reduced osteoblast apoptosis and improved implant osseointegration in osteoporosis. Oxid Med Cell Longev 2020;2020(1):6797154. DOI: 10.1155/2020/6797154
  17. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340. DOI: 10.1136/bmj.c869
  18. Zhang L, Zhang J, Ling Y, et al. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013;54(1):24–32. DOI: 10.1111/j.1600-079X.2012.01016.x
  19. Omidpanah N, Ebrahimi S, Raygani AV, et al. Total antioxidant capacity, catalase activity and salivary oxidative parameters in patients with temporomandibular disorders. Front Dent 2020;17:1–6. DOI: 10.18502/fid.v17i16.4179
  20. Abdulhameed VS, Saliem SS, Hassan TAL. Evaluation of crestal bone loss and alkaline phosphatase level in saliva according to different flap designs in single-tooth dental implant surgery (a clinical comparative study). Biomed Pharmacol J 2017;10(4):1863–1869. DOI: 10.13005/bpj/1305
  21. Galliera E, Massaccesi L, Banfi G, et al. Effect of oxidative stress on bone remodeling in periprosthetic osteolysis. Clin Rev Bone Miner Metab 2021;19(1):14–23. DOI: 10.1007/s12018-021-09278-7
  22. Harder S, Egert C, Freitag-Wolf S, et al. Intraosseous temperature changes during implant site preparation: in vitro comparison of thermocouples and infrared thermography. Int J Oral Maxillofac Implants 2018;33(1):72–78. DOI: 10.11607/jomi.6222
  23. Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 2011;51(1):1–16. DOI: 10.1111/j.1600-079X.2011.00916.x
  24. Yildirimturk S, Batu S, Alatli C, et al. The effects of supplemental melatonin administration on the healing of bone defects in streptozotocin-induced diabetic rats. J Appl Oral Sci 2016;24(3):239–249. DOI: 10.1590/1678-775720150570
  25. Khoury SB, Thomas L, Walters JD, et al. Early wound healing following one-stage dental implant placement with and without antibiotic prophylaxis: a pilot study. J Periodontol 2008;79(10):1904–1912. DOI: 10.1902/jop.2008.070670
  26. Resnik RR. Chapter 4, bone physiology, metabolism and biomechanics. Misch's Contemporary Implant Dentistry, 4th Ed. Canada: Elsevier; 2011. pp. 69–107.
  27. Koc M, Taysi S, Buyukokuroglu EM, et al. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat Res 2003;160(2):251–255. DOI: 10.1667/3034
  28. Kocadal NÇ, Attar R, Yıldırım G, et al. Melatonin treatment results in regression of endometriotic lesions in an ooferectomized rat endometriosis model. J Turk Ger Gynecol Assoc 2013;14(2):81–86. DOI: 10.5152/jtgga.2013.53179
  29. Muñoz F, López-Peña M, Miño N, et al. Topical application of melatonin and growth hormone accelerates bone healing around dental implants in dogs. Clin Implant Dent Relat Res 2012;14(2):226–235. DOI: 10.1111/j.1708-8208.2009.00242.x
  30. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem 2005;26(4):97–122. PMID: 16648882.
  31. Holtz KM, Kantrowitz ER. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett 1999;462(1–2):7–11. DOI: 10.1016/s0014-5793(99)01448-9
  32. Ansari S, Ito K, Hofmann S. Alkaline phosphatase activity of serum affects osteogenic differentiation cultures. ACS Omega 2022;7(15):12724–12733. DOI: 10.1021/acsomega.1c07225
  33. Altındal DÇ, Gümüşderelioğlu M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J Microencapsul 2016;33(1):53–63. DOI: 10.3109/02652048.2015.1115901
  34. Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 2017;14(2):209–216. DOI: 10.11138/ccmbm/2017.14.1.209
  35. Krahe DD, Woeppel KM, Yang Q, et al. Melatonin decreases acute inflammatory response to neural probe insertion. Antioxidants (Basel) 2022;11(8):1628.
  36. López-Valverde N, Pardal-Peláez B, López-Valverde A, et al. Role of melatonin in bone remodeling around titanium dental implants: meta-analysis. Coatings 2021;11(3):271. DOI: 10.3390/coatings11030271
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.