International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 12 , ISSUE 2 ( April-June, 2022 ) > List of Articles

REVIEW ARTICLE

Effect of Different Veneering Techniques on the Mechanical Failure of Tooth-supported Veneered Zirconia Crowns: A Systematic Review

Saraa Abdulateef, Hayam AlFallaj, Saeed Jamaan Alzahrani, Walaa Magdy Ahmed

Keywords : Computer-assisted design-on, Crowns, Layering, Pressing, Systematic review, Veneering technique, Zirconia

Citation Information : Abdulateef S, AlFallaj H, Alzahrani SJ, Ahmed WM. Effect of Different Veneering Techniques on the Mechanical Failure of Tooth-supported Veneered Zirconia Crowns: A Systematic Review. Int J Prosthodont Restor Dent 2022; 12 (2):77-87.

DOI: 10.5005/jp-journals-10019-1358

License: CC BY-NC 4.0

Published Online: 25-01-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Purpose: To assess the influence of different veneering techniques on the mechanical failure of tooth-supported veneered zirconia crowns. Materials and methods: An electronic literature search of PubMed, MEDLINE, SCOPUS, and Web of Science databases for relevant publications up to December 2021 was performed using the following MeSH combinations: zirconia, veneers, layering, pressing, computer-assisted design-on (CAD-on), clinical, in vitro, and crown. The focus of this study was to determine which layering technique in a single zirconia crown has the least mechanical complications according to the well-established PICO strategy. Titles and abstracts were screened to select studies based on the set criteria. Results: Of the 1,834 studies, 42 were selected for full-text reading and 12 of these met the inclusion criteria. All selected articles were in vitro studies. Among the veneering techniques, controversial findings were noted for pressed vs layered ceramic, whereas the CAD-on group showed significantly less chipping. The CAD-on technique using fused lithium disilicate layering ceramic exhibited superior mechanical performance with single crown-layered zirconia restorations over all other materials and techniques. Conclusions: Veneering techniques influence the mechanical performance of tooth-supported veneered zirconia restorations, with the advantage of the CAD-on-fused lithium disilicate technique. The findings are mainly supported by in vitro studies on single-crown restorations. Nevertheless, the clinical evidence regarding which veneering technique has better performance was inconclusive, and it suggests that all methods were adequate for clinical use.


PDF Share
  1. Mahmood DJ, Linderoth EH, Wennerberg A, et al. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers. Clin Cosmet Investig Dent 2016;8:15–27. DOI: 10.2147/CCIDE.S94343
  2. Rekow ED, Silva NR, Coelho PG, et al. Performance of dental ceramics: challenges for improvements. J Dent Res 2011;90(8):937–952. DOI: 10.1177/0022034510391795
  3. Marchionatti AME, Aurélio IL, May LG. Does veneering technique affect the flexural strength or load-to-failure of bilayer Y-TZP? A systematic review and meta-analysis. J Prosthet Dent 2018;119(6):916–924. DOI: 10.1016/j.prosdent.2017.11.013
  4. Nicolaisen MH, Bahrami G, Schropp L, et al. Comparison of metal-ceramic and all-ceramic three-unit posterior fixed dental prostheses: a 3-year randomized clinical trial. Int J Prosthodont 2016;29(3):259–264. DOI: 10.11607/ijp.4504
  5. Pjetursson BE, Sailer I, Makarov NA, et al. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: multiple-unit FDPs. Dent Mater 2015;31(6):624–639. DOI: 10.1016/j.dental.2015.02.013
  6. Limones A, Molinero-Mourelle P, Azevedo L, et al. Zirconia-ceramic versus metal-ceramic posterior multiunit tooth-supported fixed dental prostheses: a systematic review and meta-analysis of randomized controlled trials. J Am Dent Assoc 2020;151(4):230–238.e7. DOI: 10.1016/j.adaj.2019.12.013
  7. Oh W, Götzen N, Anusavice KJ. Influence of connector design on fracture probability of ceramic fixed-partial dentures. J Dent Res 2002;81(9):623–627. DOI: 10.1177/154405910208100909
  8. Molin MK, Karlsson SL. Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs. Int J Prosthodont 2008;21(3):223–227. DOI 10.1007/s00784-011-0575-2
  9. Mainjot AK, Schajer GS, Vanheusden AJ, et al. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater 2012;28(4):378–384. DOI: 10.1016/j.dental.2011.11.009
  10. Mainjot AK, Schajer GS, Vanheusden AJ, et al. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater 2012;28(2):160–167. DOI: 10.1016/j.dental.2011.11.008
  11. Kanat-Erturk B, Comlekoglu EM, Dundar-Comlekoglu M, et al. Effect of veneering methods on zirconia framework-veneer ceramic adhesion and fracture resistance of single crowns. J Prosthodont 2015;24(8):620–628. DOI: 10.1111/jopr.12236
  12. Stawarczyk B, Ozcan M, Roos M, et al. Fracture load and failure analysis of zirconia single crowns veneered with pressed and layered ceramics after chewing simulation. Dent Mater J 2011;30(4):554–562. DOI: 10.4012/dmj.2011-028
  13. Choi JE, Waddell JN, Swain MV. Pressed ceramics onto zirconia. Part 2: indentation fracture and influence of cooling rate on residual stresses. Dent Mater 2011;27(11):1111–1118. DOI: 10.1016/j.dental.2011.08.003
  14. Kanat B, Cömlekoğlu EM, Dündar-Çömlekoğlu M, et al. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J Prosthodont 2014;23(6):445–455. DOI: 10.1111/jopr.12130
  15. Schmitter M, Mueller D, Rues S. In vitro chipping behaviour of all-ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM-produced veneer with manually layered veneer. J Oral Rehabil 2013;40(7):519–525. DOI: 10.1111/joor.12061
  16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. DOI: 10.1136/bmj.n71
  17. Özcan M, Jonasch M. Effect of cyclic fatigue tests on aging and their translational implications for survival of all-ceramic tooth-borne single crowns and fixed dental prostheses. J Prosthodont 2018;27(4):364–375. DOI: 10.1111/jopr.12566
  18. Mikolajewicz N, Zimmermann EA, Willie BM, et al. Mechanically stimulated ATP release from murine bone cells is regulated by a balance of injury and repair. Elife 2018;7:e37812. DOI: 10.7554/eLife.37812
  19. Oh JW, Song KY, Ahn SG, et al. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia. J Adv Prosthodont 2015;7(5):349–357. DOI: 10.4047/jap.2015.7.5.349
  20. Lin WS, Ercoli C, Feng C, et al. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and Weibull analysis of selected dental ceramics. J Prosthodont 2012:21(5);353–362. DOI: 10.1111/j.1532-849X.2012.00845.x
  21. Jang YS, Lim CH, Song UC, et al. Debonding/crack initiation and flexural strengths of bilayered zirconia core and veneering ceramic composites. Dent Mater J 2020;39(2):206–213. DOI: 10.4012/dmj.2018-321
  22. Guess PC, Zhang Y, Thompson VP. Effect of veneering techniques on damage and reliability of Y-TZP trilayers. Eur J Esthet Dent 2009;4(3):262–276.
  23. Alessandretti R, Borba M, Benetti P, et al. Reliability and mode of failure of bonded monolithic and multilayer ceramics. Dent Mater 2017;33(2):191–197. DOI: 10.1016/j.dental.2016.11.014
  24. Tsalouchou E, Cattell MJ, Knowles JC, et al. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater 2008;24(3):308–318. DOI: 10.1016/j.dental.2007.05.011
  25. Kumchai H, Juntavee P, Sun A, et al. Effects of veneering ceramic and methods on failure load of veneered zirconia. Appl Sci 2021;11:2129. DOI: 10.3390/app11052129
  26. Gungor MB, Nemli SK, Bal BT, et al. Fracture resistance of monolithic and veneered all-ceramic four-unit posterior fixed dental prostheses after artificial aging. J Oral Sci 2019;61(2):246–254. DOI: 10.2334/josnusd.18-0060
  27. Chaar M, Witkowski S, Strub JR, et al. Effect of veneering technique on the fracture resistance of zirconia fixed dental prostheses. J Oral Rehabil 2013;40(1):51–59. DOI: 10.1111/j.1365-2842.2012.02323.x
  28. Grohmann P, Bindl A, Hammerle C, et al. Three-unit posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with layered and milled (CAD-on) veneering ceramics: 1-year follow-up of a randomized controlled clinical trial. Quintessence Int 2015;46(10):871–880. DOI: 10.3290/j.qi.a34701
  29. Naenni N, Bindl A, Sax C, et al. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results. J Dent 2015;43(11):1365–1370. DOI: 10.1016/j.jdent.2015.07.013
  30. Christensen RP, Ploeger BJ. A clinical comparison of zirconia, metal and alumina fixed-prosthesis frameworks veneered with layered or pressed ceramic: a three-year report. J Am Dent Assoc 2010;141(11):1317–1329. DOI: 10.14219/jada.archive.2010.0076
  31. Stawarczyk B, Ozcan M, Roos M, et al. Load-bearing capacity and failure types of anterior zirconia crowns veneered with overpressing and layering techniques. Dent Mater 2011;27(10):1045–1053. DOI: 10.1016/j.dental.2011.07.006
  32. Aboushelib MN, de Kler M, van der Zel JM, et al. Effect of veneering method on the fracture and bond strength of bilayered zirconia restorations. Int J Prosthodont 2008;21(3):237–240.
  33. Turk AG, Ulusoy M, Yuce M, et al. Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks. J Adv Prosthodont 2015;7(6):454–459. DOI: 10.4047/jap.2015.7.6.454
  34. Eisenburger M, Mache T, Borchers L, et al. Fracture stability of anterior zirconia crowns with different core designs and veneered using the layering or the press-over technique. Eur J Oral Sci 2011;119(3):253–257. DOI: 10.1111/j.1600-0722.2011.00829.x
  35. Ansong R, Flinn B, Chung KH, et al. Fracture toughness of heat-pressed and layered ceramics. J Prosthet Dent 2013;109(4):234–240. DOI: 10.1016/S0022-3913(13)60051-7
  36. Ishibe M, Raigrodski AJ, Flinn BD, et al. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J Prosthet Dent 2011;106(1):29–37. DOI: 10.1016/S0022-3913(11)60090-5
  37. Vidotti HA, Pereira JR, Insaurralde E, et al. Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. J Dent 2013;41(4):307–312. DOI: 10.1016/j.jdent.2012.12.001
  38. Subash M, Vijitha D, Deb S, et al. Evaluation of shear bond strength between zirconia core and ceramic veneers fabricated by pressing and layering techniques: in vitro study. J Pharm Bioallied Sci 2015;7(Suppl 2): S612–S615. DOI: 10.4103/0975-7406.163568
  39. Pharr SW, Teixeira EC, Verrett R, et al. Influence of veneering fabrication techniques and gas-phase fluorination on bond strength between zirconia and veneering ceramics. J Prosthodont 2016;25(6):478–484. DOI: 10.1111/jopr.12451
  40. Choi YS, Kim SH, Lee JB, et al. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012;4(3):162–169. DOI: 10.4047/jap.2012.4.3.162
  41. de Cassia Papaiz Goncalves F, Bottino MA, Marques de Melo RM, et al. Effect of Thickness, processing technique and cooling rate protocol on the muTBS of a bilayer ceramic system. J Adhes Dent 2015;17(4):307–312. DOI: 10.3290/j.jad.a34557
  42. Beuer F, Schweiger J, Eichberger M, et al. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings—a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25(1):121–128. DOI: 10.1016/j.dental.2008.04.019
  43. Brijawi A, Samran A, Alqerban A, et al. Effect of different core design made of computer-aided design/computer-aided manufacturing system and veneering technique on the fracture resistance of zirconia crowns: a laboratory study. J Conserv Dent 2019;22(1):59–63. DOI: 10.4103/JCD.JCD_426_18
  44. Al-Wahadni A, Shahin A, Kurtz KS. Veneered zirconia-based restorations fracture resistance analysis. J Prosthodont 2018;27(7):651–658. DOI: 10.1111/jopr.12490
  45. Beuer F, Stimmelmayr M, Gueth JF, et al. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28(4):449–456. DOI: 10.1016/j.dental.2011.11.024
  46. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent 2012;40(2):154–162. DOI: 10.1016/j.jdent.2011.12.007
  47. Preis V, Letsch C, Handel G, et al. Influence of substructure design, veneer application technique, and firing regime on the in vitro performance of molar zirconia crowns. Dental Materials 2013;29(7):e113–e121. DOI: 10.1016/j.dental.2013.04.011
  48. Schubert O, Nold E, Obermeier M, et al. Load bearing capacity, fracture mode, and wear performance of digitally veneered full-ceramic single crowns. Int J Comput Dent 2017;20(3):245–262.
  49. Bankoglu Gungor M, Karakoca Nemli S. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. J Prosthet Dent 2018;119(3):473–480. DOI: 10.1016/j.prosdent.2017.05.003
  50. Guess PC, Bonfante EA, Silva NR, et al. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013;29(3):307–316. DOI: 10.1016/j.dental.2012.11.012
  51. Baladhandayutham B, Lawson NC, Burgess JO. Fracture load of ceramic restorations after fatigue loading. J Prosthet Dent 2015;114(2):266–271. DOI: 10.1016/j.prosdent.2015.03.006
  52. Riedel C, Wendler M, Belli R, et al. In vitro lifetime of zirconium dioxide-based crowns veneered using Rapid Layer Technology. Eur J Oral Sci 2019;127(2):179–186. DOI: 10.1111/eos.12604
  53. Alsarani M, Souza G, Rizkalla A, et al. Influence of crown design and material on chipping-resistance of all-ceramic molar crowns: an in vitro study. Dent Med Probl 2018;55(1):35–42. DOI: 10.17219/dmp/85000
  54. Pandurangan KK, Veeraiyan DN, Nesappan T. In vitro evaluation of fracture resistance and cyclic fatigue resistance of computer-aided design-on and hand-layered zirconia crowns following cementation on epoxy dies. J Indian Prosthodont Soc 2020:20(1):90–96. DOI: 10.4103/jips.jips_222_19
  55. Hojjatie B, Anusavice KJ. Effects of initial temperature and tempering medium on thermal tempering of dental porcelains. J Dent Res 1993;72(3):566–571. DOI: 10.1177/00220345930720030201
  56. Rues S, Kröger E, Müller D, et al. Effect of firing protocols on cohesive failure of all-ceramic crowns. J Dent 2010;38(12):987–994. DOI: 10.1016/j.jdent.2010.08.014
  57. Rosentritt M, Behr M, van der Zel JM, et al. Approach for evaluating the influence of laboratory simulation. Dent Mater 2009;25(3):348–352. DOI: 10.1016/j.dental.2008.08.009
  58. Gillings BR, Graham CH, Duckmanton NA. Jaw movements in young adult men during chewing. J Prosthet Dent 1973;29(6):616–627. DOI: 10.1016/0022-3913(73)90269-2
  59. Hiiemae K, Heath MR, Heath G, et al. Natural bites, food consistency and feeding behaviour in man. Arch Oral Biol 1996;41(2):175–189. DOI: 10.1016/0003-9969(95)00112-3
  60. Woda A, Mishellany A, Peyron MA. The regulation of masticatory function and food bolus formation. J Oral Rehabil 2006;33(11):840–849. DOI: 10.1111/j.1365-2842.2006.01626.x
  61. Kim B, Zhang Y, Pines M, et al. Fracture of porcelain-veneered structures in fatigue. J Dent Res 2007;86(2):142–146. DOI: 10.1177/154405910708600207
  62. Kim JW, Kim JH, Thompson VP, et al. Sliding contact fatigue damage in layered ceramic structures. J Dent Res 2007;86(11):1046–1050. DOI: 10.1177/154405910708601105
  63. Vult von Steyern P, Ebbesson S, Holmgren J, et al. Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil 2006;33(9):682–689. DOI: 10.1111/j.1365-2842.2005.01604.x
  64. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6(5):462–467.
  65. Yucel MT, Yondem I, Aykent F, et al. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16(4):1105–1110. DOI: 10.1007/s00784-011-0606-z
  66. Nawafleh N, Hatamleh M, Elshiyab S, et al. Lithium disilicate restorations fatigue testing parameters: a systematic review. J Prosthodont 2016;25(2):116–126. DOI: 10.1111/jopr.12376
  67. Zhang Y, Lawn BR. Fatigue sensitivity of Y-TZP to microscale sharp-contact flaws. J Biomed Mater Res B Appl Biomater 2005;72(2):388–392. DOI: 10.1002/jbm.b.30174
  68. Rosentritt M, Behr M, Gebhard R, et al. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater 2006;22(2):176–182. DOI: 10.1016/j.dental.2005.04.024
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.