International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 10 , ISSUE 4 ( October-December, 2020 ) > List of Articles

RESEARCH ARTICLE

Evaluation of Effect of Fabrication Steps on Marginal Adaptation of CAD/CAM Zirconia-based Crowns in Comparison to Sintered PFM Crowns: An In Vitro Study

KS Sumanth, S Poovani, NK Sonnahalli

Keywords : Computer-aided design and computer-aided manufacturing, Direct metal laser sintering PFM crowns, Fabrication steps, Marginal adaptation, Zirconia crowns

Citation Information : Sumanth K, Poovani S, Sonnahalli N. Evaluation of Effect of Fabrication Steps on Marginal Adaptation of CAD/CAM Zirconia-based Crowns in Comparison to Sintered PFM Crowns: An In Vitro Study. Int J Prosthodont Restor Dent 2020; 10 (4):151-157.

DOI: 10.5005/jp-journals-10019-1295

License: CC BY-NC 4.0

Published Online: 00-12-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aims: This study aimed to compare and evaluate the effect of fabrication steps on marginal adaptation of CAD/CAM zirconia-based crowns in comparison to sintered PFM crowns. Materials and methods: Forty typhodont mandibular molar teeth were collected, a standardized protocol was followed for tooth preparation, after the tooth preparation 40 typhodont mandibular molar teeth were divided into two groups. Group I—20 CAD/CAM zirconia crowns and group II—20 sintered PFM restorations. Both the groups of crowns were analyzed for marginal fit during each step of fabrication, i.e., coping, after veneering, after cementation, and after thermomechanical loading. Each specimen was photographed using a stereomicroscope at 40× magnification to measure and evaluate the marginal discrepancy (MD). The results of a vertical MD of all tested fabrication stages were statistically analyzed using one-way analysis of variance (ANOVA), independent sample T-test. Results: In this study, the marginal gap was increased after every tested stage for both the groups. The mean marginal adaptation values were least in each stage of fabrication for CAD/CAM zirconia-based crowns (coping—104.98 μm, veneering—108.46 μm, after cementation—110.11 μm, thermomechanical loading—116.41 μm) compared to sintered PFM crowns (coping—128.87 μm, veneering—132.41 μm, after cementation—135.51 μm, thermomechanical loading—136.9 μm). Conclusion: The mean marginal adaptation values observed were all within the clinically acceptable range for both groups. Marginal adaptation of CAD/CAM zirconia-based crowns was better than sintered PFM crowns within each stage of fabrication.


PDF Share
  1. Kale E, Seker E, Yilmaz B, et al. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent 2016;116(6):890–895. DOI: 10.1016/j.prosdent.2016.05.006.
  2. Tan PL, Gratton DG, Diaz-Arnold AM, et al. An in vitro comparison of vertical marginal gaps of CAD/CAM titanium and conventional cast restorations. J Prosthodont 2008(5):378–383. DOI: 10.1111/j.1532-849X.2008.00302.x.
  3. Papadiochou S, Pissiotis A. Marginal adaptation and CAD-CAM technology: a systematic review of restorative material and fabrication techniques. J Prosthet Dent 2018;119(4):545–551. DOI: 10.1016/j.prosdent.2017.07.001.
  4. Ferrari M, Giovannetti A, Carrabba M, et al. Fracture resistance of three porcelain-layered CAD/CAM zirconia frame designs. Dent Mater 2014;30(7):163–168. DOI: 10.1016/j.dental.2014.02.004.
  5. El-Dessouky RA, Salama MM, Shakal MA, et al. Marginal adaptation of CAD/CAM zirconia-based crown during fabrication steps. Tanta Dent J 2015;12(2):81–88. DOI: 10.1016/j.tdj.2014.12.002.
  6. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66(6):747–753. DOI: 10.1016/0022-3913(91)90408-O.
  7. Krejci I, Lutz F, Reimer M. Marginal adaptation and fit of adhesive ceramic inlays. J Dent 1993;21(1):39–46. DOI: 10.1016/0300-5712(93)90048-U.
  8. Tamac E, Toksavul S, Toman M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J Prosthet Dent 2014;112(4):909–913. DOI: 10.1016/j.prosdent.2013.12.020.
  9. Nicolaisen MH, Bahrami G, Finlay S, et al. Comparison of fatigue resistance and failure modes between metal-ceramic and all-ceramic crowns by cyclic loading in water. J Dent 2014;42(12):1613–1620. DOI: 10.1016/j.jdent.2014.08.013.
  10. Campbell SD, Sirakian A, Pelletier LB, et al. Effects of firing cycle and surface finishing on distortion of metal ceramic castings. J Prosthet Dent 1995;74(5):476–481. DOI: 10.1016/S0022-3913(05)80348-8.
  11. Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil 1999;26(7):582–593. DOI: 10.1046/j.1365-2842.1999.00449.x.
  12. Groten M, Axmann D, Pröbster L, et al. Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J Prosthet Dent 2000;83(1):40–49. DOI: 10.1016/S0022-3913(00)70087-4.
  13. Nakamura T, Dei N, Kojima T, et al. Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns. Int J Prosthodont 2003;16(3):244–248.
  14. Quintas AF, Oliveira F, Bottino MA. Vertical marginal discrepancy of ceramic copings with different ceramic materials, finish lines, and luting agents: an in vitro evaluation. J Prosthet Dent 2004;92(3):250–257. DOI: 10.1016/j.prosdent.2004.06.023.
  15. Balkaya MC, Cinar A, Pamuk S. Influence of firing cycles on the margin distortion of 3 all-ceramic crown systems. J Prosthet Dent 2005;93(4):346–355. DOI: 10.1016/j.prosdent.2005.02.003.
  16. Goldin EB, Boyd NW, Goldstein GR, et al. Marginal fit of leucite-glass pressable ceramic restorations and ceramic-pressed-to-metal restorations. J Prosthet Dent 2005;93(2):143–147. DOI: 10.1016/j.prosdent.2004.10.023.
  17. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater 2008;24(5):633–638. DOI: 10.1016/j.dental.2007.06.030.
  18. Beuer F, Edelhoff D, Gernet W, et al. Effect of preparation angles on the precision of zirconia crown copings fabricated by CAD/CAM system. Dent Mater J 2008;27(6):814–820. DOI: 10.4012/dmj.27.814.
  19. Beuer F, Aggstaller H, Richter J, et al. Influence of preparation angle on marginal and internal fit of CAD/CAM-fabricated zirconia crown copings. Quintessence Int 2009;40(3):243–250.
  20. Limkangwalmongkol P, Kee E, Chiche GJ, et al. Comparison of marginal fit between all-porcelain margin versus alumina-supported margin on procera alumina crowns. J Prosthodont 2009;18(2):162–166. DOI: 10.1111/j.1532-849X.2008.00396.x.
  21. Kashinatha HM, Mohamed Ateeq P, Jagadeesh KN, et al. Tooth preparation and cementation guidelines for zirconia based restorations - a scientific perspective. J Dent and Oral Biosci 2011;2(2):30–33.
  22. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent Mate 2011;27(1):83–96. DOI: 10.1016/j.dental.2010.10.024.
  23. Dejak B, Młotkowski A, Langot C. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials. Dent Mater 2012;28(4):433–441. DOI: 10.1016/j.dental.2011.11.019.
  24. Güth JF, Wallbach J, Stimmelmayr M, et al. Computer-aided evaluation of preparations for CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig 2013;17(5):1389–1395. DOI: 10.1007/s00784-012-0812-3.
  25. Contrepois M, Soenen A, Bartala M, et al. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 2013;110(6):447–454. DOI: 10.1016/j.prosdent.2013.08.003.
  26. Benetti P, Kelly JR, Della Bona A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent Mater 2013;29(11):1166–1172. DOI: 10.1016/j.dental.2013.08.212.
  27. Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur J Dent 2014;8(4):437–444. DOI: 10.4103/1305-7456.143612.
  28. Lee KH, Yeo IS, Benjamin M, et al. Effects of computer-aided manufacturing technology on precision of clinical metal-free restorations. Bio Med Res Int 2015. 1–5.
  29. Preis V, Behr M, Hahnel S, et al. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dent Mater 2015;31(11):1363–1369. DOI: 10.1016/j.dental.2015.08.154.
  30. Lins L, Bemfica V, Queiroz C, et al. In vitro evaluation of the internal and marginal misfit of CAD/CAM zirconia copings. J Prosthet Dent 2015;113(3):205–211. DOI: 10.1016/j.prosdent.2014.09.010.
  31. Sorrentino R, Triulzio C, Tricarico MG, et al. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328–333. DOI: 10.1016/j.jmbbm.2016.04.014.
  32. Ates SM, Yesil Duymus Z. Influence of tooth preparation design on fitting accuracy of CAD-CAM based restorations. J Esthet Restor Dent 2016;28(4):238–246. DOI: 10.1111/jerd.12208.
  33. Hamza TA, Sherif RM. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems. J Prosthet Dent 2017;117(6):762–766. DOI: 10.1016/j.prosdent.2016.09.011.
  34. Rai R, Kumar S, Prabhu R, et al. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques. Indian J Dent Res 2017;28(3):291–297. DOI: 10.4103/ijdr.IJDR_81_17.
  35. Arora A, Yadav A, Upadhyaya V, et al. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: an in vitro study. J Indian Prosthodont Soc 2018;18(2):102–107. DOI: 10.4103/jips.jips_327_17.
  36. Kohorst P, Brinkmann H, Dittmer MP, et al. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil 2010;37(4):283–291. DOI: 10.1111/j.1365-2842.2009.02053.x.
  37. Subasi G, Ozturk N, Ozgur I, et al. Evaluation of marginal fit of two all-ceramic copings with two finish lines. Eur J Dent 2012;6(2):163–168. DOI: 10.1055/s-0039-1698946.
  38. Anusavice KJ, Carroll JE. Effect of incompatibility stress on the fit of metal-ceramic crowns. J Dent Res 1987;66(8):1341–1345. DOI: 10.1177/00220345870660081101.
  39. Gupta R. In in-vitro evaluation of effect of different finish lines on marginal adaptation in metal-ceramic restorations under thermo-mechanical loading. Ind J Dent Res 2011;22(4):608–610. DOI: 10.4103/0970-9290.90315.
  40. Rastogi A, Kamble V. Comparative analysis of the clinical techniques used in evaluation of marginal accuracy of cast restoration using stereomicroscopy as gold. J Adv Prosthodont 2011;3(2):69–75. DOI: 10.4047/jap.2011.3.2.69.
  41. Dittmer MP, Borchers L, Stiesch M, et al. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 2009;5(8):3231–3239. DOI: 10.1016/j.actbio.2009.04.025.
  42. Fahmy NZ. Influence of veneering materials on the marginal fit and fracture resistance of an alumina core system. J Prosthodont 2011;20(1):45–51. DOI: 10.1111/j.1532-849X.2010.00626.x.
  43. Gemalmaz D, Alkumru HN. Marginal fit changes during porcelain firing cycles. J Prosthet Dent 1995;73(1):49–54. DOI: 10.1016/S0022-3913(05)80272-0.
  44. Kim JW, Covel NS, Guess PC, et al. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 2010;89(1):91–95. DOI: 10.1177/0022034509354193.
  45. Sulaiman F, Chai J, Jameson LM, et al. A comparison of the marginal fit of In-Ceram, IPS Empress, and procera crowns. Int J Prosthodont 1997;10(5):478–484.
  46. Vigolo P, Fonzi F. An in vitro evaluation of fit of zirconium-oxide-based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont 2008;17(8):621–626. DOI: 10.1111/j.1532-849X.2008.00366.x.
  47. Att W, Komine F, Gerds T, et al. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent 2009;101(4):239–247. DOI: 10.1016/S0022-3913(09)60047-0.
  48. Gonzalo E, Suárez MJ, Serrano B, et al. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J Prosthet Dent 2009;102(6):378–384. DOI: 10.1016/S0022-3913(09)60198-0.
  49. de Almeida JGDSP, Guedes CG, Abi-Rached FO, et al. Marginal fit of metal-ceramic copings: effect of luting cements and tooth preparation design. J Prosthodont 2019;28(1):e265–e270. DOI: 10.1111/jopr.12685.
  50. Blatz MB, Oppes S, Chiche G, et al. Influence of cementation technique on fracture strength and leakage of alumina all-ceramic crowns after cyclic loading. Quintessence Int 2008;39(1):23–32.
  51. Albert FE, El-Mowafy OM. Marginal adaptation and microleakage of procera AllCeram crowns with four cements. Int J Prosthodont 2004;17(5):529–535.
  52. Al Rifaiy MQ. Evaluation of vertical marginal adaptation of provisional crowns by digital microscope. Niger J Clin Pract 2017;20(12):1610–1617.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.