International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 10 , ISSUE 1 ( January-March, 2020 ) > List of Articles

Original Article

A Microleakage Evaluation of Two Generations of Bonding Agents Using a Novel Fluid Filtration Model

Asiya Shaikh, Vivek Hegde, Srilatha Shanmugasundaram

Keywords : Adper Scotchbond primer and adhesive, Adper Single Bond, Microleakage, Single Bond Universal

Citation Information : Shaikh A, Hegde V, Shanmugasundaram S. A Microleakage Evaluation of Two Generations of Bonding Agents Using a Novel Fluid Filtration Model. Int J Prosthodont Restor Dent 2020; 10 (1):21-25.

DOI: 10.5005/jp-journals-10019-1260

License: CC BY-NC 4.0

Published Online: 01-03-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: The aim of the study was to evaluate the microleakage between two different generations of bonding agents using fluid filtration model. Materials and methods: In total, 60 human extracted mandibular molars were used in the study. The samples were divided into three groups, group I—Adper Scotchbond primer and adhesive, group II—Single Bond Universal adhesive, and group III—control group. All the samples were restored and stored in distilled water for 24 hours followed by thermocycling in water bath for 1,000 cycles between 5 ± 2°C and 55 ± 2°C, for dwell time of 30 seconds and transfer time of 10 seconds. The samples were then tested for leakage under fluid filtration model. Results: There was a statistically significant difference between the leakage in between the two groups. The difference was found to be statistically significant (p < 0.05). Single bond group showed better adhesion and less leakage compared to the Adper Scotchbond primer and adhesive. Conclusion: Single Bond Universal adhesive (3M) showed the least amount of microleakage when compared to Adper Single Bond 2 and Adper Scotchbond primer and adhesive. Fluid filtration model was successfully constructed and worked efficiently and can be considered as one of the ideal methods for evaluation of microleakage.


PDF Share
  1. Van Noort R. Introduction to Dental Materials. Papel. Spain: Times Mirror International Publishers Limited; 1994. pp. 3–145.
  2. El-Mowafy OM, Lewis DW, Benmergui C, et al. Meta-analysis on long-term clinical performance of posterior composite restorations. J Dent 1994;22(1):33–43. DOI: 10.1016/0300-5712(94)90143-0.
  3. Taylor DF, Bayne SC, Leinfelder KF, et al. Pooling of long-term clinical wear data for posterior composites. Am J Dent 1994;7(3): 167–174.
  4. Turssi CP, De Moraes Purquerio B, Serra MC. Wear of dental resin composites: insights into underlying processes and assessment methods – a review. J Biomed Mater Res B Appl Biomater 2003;65(2):280–285. DOI: 10.1002/jbm.b.10563.
  5. Finer Y, Jaffer F, Santerre JP. Mutual influence of cholesterol esterase and psuedocholinesterase on the biodegradation of dental composites. Biomaterials 2004;25(10):1787–1793. DOI: 10.1016/j.biomaterials.2003.08.029.
  6. Lin BA, Jaffer F, Duff MD, et al. Identifying enzyme activities within human saliva which are relevant to dental resin composite biodegradation. Biomaterials 2005;26(20):4259–4264. DOI: 10.1016/j.biomaterials.2004.11.001.
  7. Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996;17(2):103–114. DOI: 10.1016/0142-9612(96)85755-3.
  8. Schedle A, Franz A, Rausch-Fan X, et al. Cytotoxic effects of dental composites, adhesive substances, compomers and cements. Dent Mater 1997;14(6):429–440. DOI: 10.1016/S0300-5712(99)00018-4.
  9. Santerre JP, Shajii L, Tsang H. Biodegradation of commercial dental composites by cholesterol esterase. J Dent Res 1999;78(8):1459–1468. DOI: 10.1177/00220345990780081201.
  10. Wataha JC. Principles of biocompatibility for dental practitioners. J Prosthet Dent 2011;86(2):203–209. DOI: 10.1067/mpr.2001.117056.
  11. Freund M, Munksgarrd EC. Enzymatic degradation of BISGMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Scand J Dent Res 1990;98(4):351–355. DOI: 10.1111/j.1600-0722.1990.tb00984.x.
  12. Munksgaard EC, Freund M. Enzymatic hydrolysis of (di) methacrylates and their polymers. Scand J Dent Res 1990;98(3):351–355. DOI: 10.1111/j.1600-0722.1990.tb00971.x.
  13. Asmussen E, Munksgaard EC. Bonding of restorative resins to dentine: status of dentine adhesives and impact on cavity design and filling techniques. Int Dent J 1988;38(2):97–104.
  14. Prati C, Nucci C, Davidson CL, et al. Early marginal leakage and shear bond strength of adhesive restorative systems. Dent Mater 1990;6(3):195–200. DOI: 10.1016/0109-5641(90) 90029-E.
  15. Lee SY, Greener EH, Mueller HJ. Effect of food and oral simulating fluids on structure of adhesive composite systems. J Dent 1995;23(1):27–35. DOI: 10.1016/0300-5712(95)90657-4.
  16. Oysaed H, Sjovik-Kleven IJ. Release of formaldehyde from dental composites. J Dent Res 1988;67(10):1289–1294. DOI: 10.1177/00220345880670100901.
  17. Bean TA, Zhuang WC, Tong PY, et al. Effect of esterase on methacrylates and methacrylate polymers in an enzyme simulator for biodurability and biocompatibility testing. J Biomed Mat Res 1994;28(1):59–63. DOI: 10.1002/jbm.820280108.
  18. Shajii L, Santerre JP. Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials 1999;20(20):1897–1908. DOI: 10.1016/S0142-9612(99)00087-3.
  19. Coury AJ, Levy RJ, McMillin CR, et al. Degradation of materials in the biological environment. In: Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. San diego, California: Academic Press Inc.; 1996. pp. 243–281.
  20. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 2001;12(2):136–151. DOI: 10.1177/10454411010120020401.
  21. Finer Y, Santerre JP. The influence of resin chemistry on a dental composites biodegradation. J Biomed Mater Res 2004;69(2):233–246. DOI: 10.1002/jbm.a.30000.
  22. Jaffer F, Finer Y, Santerre JP. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials 2002;23(7):1707–1719. DOI: 10.1016/S0142-9612(01)00298-8.
  23. Finer Y, Santerre JP. Salivary esterase activity and its association with the biodegradation of dental composites. J Dent Res 2004;83(1): 22–26. DOI: 10.1177/154405910408300105.
  24. Buonocore MG, Matsui A, Gwinnett AJ. Penetration of resin dental materials into enamel surfaces with reference to bonding. Arch Oral Biol 1968;13(1):61–70. DOI: 10.1016/0003-9969(68)90037-X.
  25. Eick JD, Robinson SJ, Byerley TJ, et al. Scanning transmission electron microscopy/energy-dispersive spectroscopy analysis of the dentin adhesive interface using a labeled 2-hydroxythelmethacrylate analogue. J Dent Res 1995;74(6):1246–1252. DOI: 10.1177/00220345950740060201.
  26. Kaya S, Özer SY, Adigüzel O, et al. Comparison of apical microleakage of dualcuring resin cements with fluid-filtration and dye extraction techniques. comparison of apical microleakage. Med Sci Monit 2015;21:937–944. DOI: 10.12659/MSM.892741.
  27. Van Meerbeek B, De Munck J, Yoshida Y, et al. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 2003;28(3):550–555.
  28. Youngson CC. In vitro marginal leakage: examination of measurements used in assessment. J Dent 1990;18(1):142–146. DOI: 10.1016/0300-5712(90)90053-H.
  29. Taylor MJ, Lynch E. Marginal adaptation. J Dent 1992;20(1):3–10. DOI: 10.1016/0300-5712(92)90002-T.
  30. Kallenos TN, Al-Badawi E, White GE. An in vitro evaluation of microleakage in class I preparations using 5th, 6th, and 7th generation composite bonding agents. J Clin Pediatr Dent 2005;29(4):323–328. DOI: 10.17796/jcpd.29.4.b51q018j100403p5.
  31. Jain P, Belcher M. Microleakage of class II resin based composite restorations with flowable composite in the proximal box. Am J Dent 2001;13(5):235–238.
  32. Phillips RW. Phillip's science of dental materials. 10th ed., Philadelphia PA: W.B. Saunders Co; 1996. pp. 243–280.
  33. Pashley DH, Tay FR. Aggressiveness of contemporary selfetching adhesives. Part II: Etching effects on unground enamel. Dent Mater 2001;17(5):430–444.
  34. Muñoz MA, Luque I, Hass V, et al. Immediate bonding properties of universal adhesives to dentine. J Dent 2013;41(5):404–411. DOI: 10.1016/j.jdent.2013.03.001.
  35. Rueggeberg FA. Substrate for adhesion testing to tooth structure–a review of literature. Dent Mater 1991;7:2–10.
  36. Gregoire G, Guignes PH, Millas A. Effect of self-etching adhesives and dentin permeability in a fluid flow model. J Prosthetc Dent 2005;93:56–63. DOI: 10.1016/j.prosdent.2004.10.008.
  37. Loguercio AD, Bittencourt DD, Baratieri LN, et al. A 36-month evaluation of self-etch and etch-and-rinse adhesives in non-carious cervical lesions. J Am Dent Assoc 2007;138(4):507–514. DOI: 10.14219/jada.archive.2007.0204.
  38. Pradelle-Plasse N, Wenger F, Picard B, et al. Evaluation of microleakage of composite resin restorations by an electrochemical technique: the impedance methodology. Dental Mater 2004;20(5):425–434. DOI: 10.1016/j.dental.2003.06.003.
  39. Deliperi S, Bardwell DN, Wegley C. Xeno III self-etch adhesive had less leakage than Prime and Bond NT total-etch adhesive using fluid filtration. Oper Dent 2007;32(2):179–184.
  40. Bracket WW, Haisch LD, Pearce MG, et al. Microleakage of class V resin composite restorations placed with self-etching adhesives. J Prosthet Dent 2004;91(1):42–45. DOI: 10.1016/j.prosdent.2003.10.003.
  41. Camps J, Pashley D. Reliability of the dye penetration studies. J Endod 2003;29(9):592–594. DOI: 10.1097/00004770-200309000-00012.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.