International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 9 , ISSUE 2 ( April-June, 2019 ) > List of Articles

Original Article

Stress Distribution Analysis at the Bone–Implant Interface Using Four Different Superstructure Materials in an Implant-retained Mandibular Overdenture: A Photoelastic Study

Gouri V Anehosur, Pragnya Medappa, Varun V Venkitakrishnan, Mili Gupta, Roseline P Meshramkar, Lekha K Pillai

Keywords : Cast metal, Glass fiber, Implant-retained overdenture, Laboratory research, PEEK, Photoelasticity, Polymethylmethacrylate, Superstructure

Citation Information : Anehosur GV, Medappa P, Venkitakrishnan VV, Gupta M, Meshramkar RP, Pillai LK. Stress Distribution Analysis at the Bone–Implant Interface Using Four Different Superstructure Materials in an Implant-retained Mandibular Overdenture: A Photoelastic Study. Int J Prosthodont Restor Dent 2019; 9 (2):43-46.

DOI: 10.5005/jp-journals-10019-1230

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: To analyze and depict the stress distribution at the bone–implant interface using four different superstructure materials for an implant-retained overdenture, through a photoelastic study. Materials and methods: The present study included construction of photoelastic models of an edentulous mandible with two implants in the parasymphseal region. On these models, the dentures were fabricated using conventional heat cure acrylic, heat cure acrylic reinforced with NiCr, heat cure acrylic reinforced with a fiber force mesh, and heat cure acrylic reinforced with PEEK. These models were then subjected to photoelastic stress analysis. Results: The results showed a higher number of fringes in the denture fabricated with heat cure acrylic reinforced with NiCr. The fringes were better distributed in the photoelastic model with denture fabricated using heat cure acrylic reinforced with PEEK. Conclusion: The stress distribution in the bone–implant interface is markedly improved when an acrylic resin prosthesis is reinforced with PEEK as a superstructure material.


PDF Share
  1. Mariano LO, Sartori EA, et al. Stresses in implant-supported overdentures with bone resorption: A 3-D finite element analysis. Rev Odonto Ciênc 2012;27(1):41–46. DOI: 10.1590/S1980-65232012000100008.
  2. Kant B, Ranjan M, et al. A randomized controlled trial comparing the radiographic evaluation of crestal bone resorption in single implant vs two implant-retained overdentures. J Family Med Prim Care 2019;8(5):1594–1598. DOI: 10.4103/jfmpc.jfmpc_58_19.
  3. DuBrul EL, Sicher H. The Adaptive Chin. Springfield, IL: Charles C. Thomas, Publisher; 1954.
  4. Chen J, Ahmad R, et al. Biomechanics of oral mucosa. J R Soc Interface 2015;12(109):20150325. DOI: 10.1098/rsif.2015.0325.
  5. El-Zawahry MM, Ibraheem EM, et al. Stress analysis of mandibular implant overdentures retained with one, two, or four ball attachments: A finite element study. Dent Res J 2018;15(6):437–443. DOI: 10.4103/1735-3327.245234.
  6. Hemmings KW, Schmitt A, et al. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: a 5-year report. Int J Oral Maxillofac Implants 1994;9:191–196.
  7. Schwartz IS, Morrow RM. Overdentures. Principles and procedures. Dent Clin North Am 1966;40(1):169–194.
  8. Rodrigues AH. Metal reinforcement for implant-supported mandibular overdentures. J Prosthet Dent 2000;83(5):511–513. DOI: 10.1016/S0022-3913(00)70006-0.
  9. Vojdani M, Khaledi AA. Transverse strength of reinforced denture base resin with metal wire and E-glass fibers. J Dent 2006;3(4):159–166.
  10. de Medeiros RA, Goiato MC, et al. Stress Distribution in an Implant-Supported Mandibular Complete Denture Using Different Cantilever Lengths and Occlusal Coating Materials. Implant Dent 2017;26(1): 106–111. DOI: 10.1097/ID.0000000000000534.
  11. Corrêa CB, Ribeiro AL, et al. Photoelasticity in Dentistry: a literature review. RSBO 2014;11(2):178–184.
  12. Sadowsky SJ, Caputo AA. Stress transfer of four mandibular implant overdenture cantilever designs. J Prosthet Dent 2004;92(4):328–336. DOI: 10.1016/j.prosdent.2004.07.028.
  13. Tokuhisa M, Matsushita Y, et al. In vitro study of a mandibular implant overdenture retained with ball, magnet, or bar attachments: Comparison of load transfer and denture stability. Int J Prosthodont 2003;16(2):128–134.
  14. Elkafrawy MG, Elfatah FA, et al. Comparative evaluation of two different implant lengths for implant-assisted complete mandibular overdenture. Tanta Dent J 2016;13(3):139–146. DOI: 10.4103/1687-8574.191432.
  15. Ebadian B, Mosharraf R, et al. Finite element analysis of the influence of implant inclination on stress distribution in mandibular overdentures. J Oral Implantol 2015;41(3):252–257. DOI: 10.1563/AAID-JOI-D-11-00110.
  16. Haraldson T, Carlsson GE. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1977;85(3):200–208. DOI: 10.1111/j.1600-0722.1977.tb00554.x.
  17. Clunet-Coste B, Garampon S, et al. Implant Supported Removable Prostheses. Spectrum Denturism 2010;4(1):6–12.
  18. Heary RF, Parvathreddy N, et al. Elastic modulus in the selection of interbody implants. J Spine Surg 2017;3(2):163–167. DOI: 10.21037/jss.2017.05.01.
  19. Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol 2013;39(6):743–749. DOI: 10.1563/AAID-JOI-D-11-00002.
  20. Costa-Palau S, Torrents-Nicolas J, et al. Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: a clinical report. J Prosthet Dent 2014;112(3):680–682. DOI: 10.1016/j.prosdent.2013. 10.026.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.