International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 15 , ISSUE 1 ( January-March, 2025 ) > List of Articles

ORIGINAL RESEARCH

Comparative Evaluation of Peri-implant Strain Generated by Implant-supported Crowns Fabricated with Different Restorative Materials: An In Vitro Study

Komalpreet Kaur, Komal Sehgal, Puneet Sahore, Prashant Jindal, Shefali Singla, Shrishti Bhardwaj

Keywords : Dental implants, Implant-supported crowns, Peri-implant strain, Polyetheretherketone, Strain gauge

Citation Information : Kaur K, Sehgal K, Sahore P, Jindal P, Singla S, Bhardwaj S. Comparative Evaluation of Peri-implant Strain Generated by Implant-supported Crowns Fabricated with Different Restorative Materials: An In Vitro Study. Int J Prosthodont Restor Dent 2025; 15 (1):20-26.

DOI: 10.5005/jp-journals-10019-1487

License: CC BY-NC 4.0

Published Online: 28-03-2025

Copyright Statement:  Copyright © 2025; The Author(s).


Abstract

Purpose: To evaluate and compare peri-implant strain generated by polyetheretherketone (PEEK), zirconia, and porcelain-fused-to-metal (PFM) screw- and cement-retained implant-supported crowns using strain gauges. Materials and methods: A 4 × 12 mm implant (Dentium) was placed in a polymethyl methacrylate (PMMA) block. A prefabricated standard abutment was screwed onto the implant and scanned using a lab scanner. Thirty crowns for the three study groups (n = 10 each), namely PEEK, zirconia, and PFM, were fabricated and screwed onto the implant. Four strain gauges were bonded on the test block around the implant neck at buccal, lingual, mesial, and distal locations. An axial load of 250 N was applied in the center of the crown using a universal testing machine (UTM). Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (p < 0.05). Results: One-way ANOVA revealed a significant difference (p < 0.001) among the groups. PEEK (1795.7 µε) showed significantly lower values of microstrain compared to zirconia (3110 µε) and PFM crowns (3435.9 µε). In all groups, strain was found to be higher on the buccal aspect, followed by the distal, lingual, and least in the mesial region. Conclusion: Peri-implant strain is influenced by the type of restorative material. PEEK significantly reduced the peri-implant strain relative to zirconia and PFM implant-supported crowns. PEEK may be a more biomechanically favorable material for implant-supported restorations, offering better stress distribution and reducing the risk of excessive peri-implant bone strain.


PDF Share
  1. Kupka JR, König J, Al-Nawas B, et al. How far can we go? A 20-year meta-analysis of dental implant survival rates. Clin Oral Investig 2024;28:541. DOI: 10.1007/s00784-024-05929-3
  2. Vasconcellos LM, Villaça-Carvalho MF, Prado RF, et al. A study about cell activity on anodized Ti-6Al-4V by means of pulsed current. J Eng Sci Technol 2017;12:1240–1252. DOI: 10.9771/2176-4794ell.v56i56.22707
  3. Magne P, Silva M, Oderich E, et al. Damping behavior of implant-supported restorations. Clin Oral Implants Res 2013;24:143–148. DOI: 10.1111/j.1600-0501.2011.02311.x
  4. Menini M, Conserva E, Tealdo T, et al. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont 2013;26:549–556. DOI: 10.11607/ijp.3241
  5. Rosentritt M, Schneider-Feyrer S, Behr M, et al. In vitro shock absorption tests on implant-supported crowns: influence of crown materials and luting agents. Int J Oral Maxillofac Implants 2018;33:116–122. DOI: 10.11607/jomi.5463
  6. Hegde C, Krishna Prasad D, Deepmala S, et al. Implant restoration materials: an overview. Int J Oral Implantol Clin Res 2010;1:43–48.
  7. Pjetursson BE, Valente NA, Strasding M, et al. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin Oral Implants Res 2018;16:199–214. DOI: 10.1111/clr.13306
  8. Bona AD, Pecho OE, Alessandretti R. Zirconia as a dental biomaterial. Materials 2015;8:4978–4991. DOI: 10.3390/ma8084978
  9. Tekin S, Cangül S, Adıgüzel Ö, et al. Areas for use of PEEK material in dentistry. Int Dent Res 2018;8:84–92. DOI: 10.5577/intdentres.2018.084
  10. Skirbutis G, Dzingutė A, Masiliūnaitė V, et al. A review of PEEK polymer's properties and its use in prosthodontics. Stomatologija 2017;19:19–23. DOI: 10.1038/s41598-018-19735-2
  11. Han KH, Lee JY, Shin SW. Implant- and tooth-supported fixed prostheses using a high-performance polymer (Pekkton) framework. Int J Prosthodont 2016;29:451–454. DOI: 10.11607/ijp.4688
  12. Najeeb S, Zafar MS, Khurshid Z, et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016;60:12–19. DOI: 10.1016/j.jpor.2015.10.001
  13. Brånemark P, Zarb G, Albrektsson T. Tissue-integrated prosthesis. Chicago: Quintessence Publ; 1985; pp. 56–162.
  14. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983;49:843–849. DOI: 10.1016/0022-3913(83)90361-x
  15. Papavasiliou G, Kamposiora P, Bayne SC, et al. Three-dimensional finite element analysis of stress distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76:633–640. DOI: 10.1016/s0022-3913(96)90442-4
  16. Cibirka RM, Razzoog ME, Lang BR, et al. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 1992;67:361–364. DOI: 10.1016/0022-3913(92)90247-8
  17. Bassit R, Lindström H, Rangert B. In vivo registration of force development with ceramic and acrylic resin occlusal materials on implant-supported prostheses. Int J Oral Maxillofac Implants 2002;17:17–23. DOI: 10.1002/j.1600-0501.2002.tb01028.x
  18. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed. St Louis: Mosby; 2006. pp. 323–327.
  19. Ciftci Y, Canay S. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants 2000;15:571–582. DOI: 10.11607/jomi.2000.15.5.571
  20. Saad NT, Osman E, Abdelhamid AM, et al. Stress analysis comparing effect of two different CAD-CAM implant superstructure materials (in-vitro study). BAU J 2020;2:5. DOI: 10.54729/2789-8334.1029
  21. Kandeel ZM, Abdelhamed AM, Neena AF. Strain developed around dental implants loaded with two CAD-CAM reinforced polymeric superstructure materials: an in-vitro comparative study. Alex Dent J 2023;48:124–131. DOI: 10.54729/2789-8334.1029
  22. Hürzeler MB, Quiñones CR, Kohal RJ, et al. Changes in peri-implant tissues subjected to orthodontic forces and ligature breakdown in monkeys. J Periodontol 1998;69:396-404. DOI: 10.1902/jop.1998.69.3.396
  23. Stegaroiu R, Kusakari H, Nishiyama S, et al. Influence of prosthesis material on stress distribution in bone and implant: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998;13:781–790. DOI: 10.11607/jomi.1998.13.6.781
  24. Da Silva JG, de Carvalho AA, da Silva DD. A strain gauge tactile sensor for finger-mounted applications. IEEE Trans Instrum Meas 2002;51:18–22. DOI: 10.1109/19.989890
  25. Soumeire J, Dejou J. Shock absorbability of various restorative materials used on implants. J Oral Rehabil 1999;26:394–401. DOI: 10.1046/j.1365-2842.1999.00377.x
  26. Vieriu RM, Tănculescu O, Mocanu F, et al. The validation of an acrylic resin for the completion of biomechanical studies on a mandibular model. Roman J Oral Rehabil 2015;7:74–79. DOI: 10.1515/romjorr-2015-0011
  27. El-Mahdy M, Aboelfadl A, Ahmed F, et al. Strain gauge analysis and fracture resistance of implant-supported PEKK hybrid abutments restored with two crown materials: an in vitro study. Dent Med Probl 2023;60:497–503. DOI: 10.17219/dmp/170311
  28. Shetty R, Singh I, Sumayli HA, et al. Effect of prosthetic framework material, cantilever length, and opposing arch on peri-implant strain in an all-on-four implant prostheses. Niger J Clin Pract 2021;24: 866–873. DOI: 10.4103/njcp.njcp_398_20
  29. Tonelli SQ, Antunes MA, de Toubes KMS, et al. Dentinal microcracks induced by endodontic procedures: suggested design for experimental studies using micro-computed tomography and strain gauges. J Endod 2021;47(7):1157–1165. DOI: 10.1016/j.joen.2021.04.016
  30. Abarno S, Gehrke AF, Dedavid BA, et al. Stress distribution around dental implants generated by six different ceramic materials for unitary restoration: an experimental photoelastic study. Dent Med Probl 2021;58:453–461. DOI: 10.17219/dmp/135997
  31. Kaleli N, Sarac D, Külünk S, et al. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent 2018;119:437–445. DOI: 10.1016/j.prosdent.2017.03.008
  32. Tamrakar SK, Mishra SK, Chowdhary R, et al. Comparative analysis of stress distribution around CFR-PEEK implants and titanium implants with different prosthetic crowns: a finite element analysis. Dent Med Probl 2021;58:359–367. DOI: 10.17219/dmp/133234
  33. Yilmaz B, Alsaery A, Altintas SH, et al. Comparison of strains for new generation CAD-CAM implant-supported crowns under loading. Clin Implant Dent Relat Res 2020;22:397–402. DOI: 10.1111/cid.12894
  34. Kang I, Yoon Y, Park S, et al. Impact of considering bone remodeling in risk assessment of mandibular implant-supported bridges. J Comput Des Eng 2025;12:14–26. DOI: 10.1093/jcde/qwaf005
  35. Santiago Junior JF, Pellizzer EP, Verri FR, et al. Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3D finite element study. Mater Sci Eng C Mater Biol Appl 2013;33:4700–4714. DOI: 10.1016/j.msec.2013.07.027
  36. Taha D, Sabet A. In vitro evaluation of material-dependent force damping behavior of implant-supported restorations using different CAD-CAM materials and luting conditions. J Prosthet Dent 2021;12:93. DOI: 10.1016/j.prosdent.2021.03.016
  37. He J, Zheng Z, Wu M, et al. Influence of restorative material and cement on the stress distribution of endocrowns: 3D finite element analysis. BMC Oral Health 2021;21:1–9. DOI: 10.1186/s12903-021-01865-w
  38. Gracis SE, Nicholls JI, Chalupnik JD, et al. Shock-absorbing behavior of five restorative materials used on implants. Int J Prosthodont 1991;4:282–291. DOI: 10.1016/S0893-2174(91)70076-4
  39. Tiossi R, Lin L, Conrad HJ, et al. Digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution. J Prosthodont Res 2012;56:25–31. DOI: 10.1016/j.jpor.2011.05.003
  40. Bijjargi S, Chowdhary R. Stress dissipation in the bone through various crown materials of dental implant restoration: a 2D finite element analysis. J Investig Clin Dent 2013;4(3):172–177. DOI: 10.1111/j.2041-1626.2012.00149.x
  41. Mourya A, Nahar R, Mishra SK, et al. Stress distribution around different abutments on titanium and CFR-PEEK implant with different prosthetic crowns under parafunctional loading: a 3D FEA study. J Oral Biol Craniofac Res 2021;11:313–320. DOI: 10.1016/j.jobcr.2021.03.005
  42. Frost HM. Strain and other mechanical influences on bone strength and maintenance. Curr Orthop 1997;8:60–70.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.