International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 15 , ISSUE 1 ( January-March, 2025 ) > List of Articles

ORIGINAL RESEARCH

Impact of Artificial Aging on the Optical Properties of High-translucent Zirconia and Lithium Disilicate: An In Vitro Analysis

Mahmoud A Aboulhawa, Shereen A Amin, Ahmed N Abdelaziz

Keywords : Artificial aging, Color stability, Lithium disilicate, Optical properties, Translucency, Translucent zirconia

Citation Information : Aboulhawa MA, Amin SA, Abdelaziz AN. Impact of Artificial Aging on the Optical Properties of High-translucent Zirconia and Lithium Disilicate: An In Vitro Analysis. Int J Prosthodont Restor Dent 2025; 15 (1):3-9.

DOI: 10.5005/jp-journals-10019-1485

License: CC BY-NC 4.0

Published Online: 28-03-2025

Copyright Statement:  Copyright © 2025; The Author(s).


Abstract

Purpose: This study evaluates the effects of artificial aging on the optical properties of high-translucent zirconia and lithium disilicate used for esthetic restorations. Materials and methods: About 36 disk-shaped specimens (10 mm diameter, 1 mm thickness) were fabricated from three materials: high-translucent zirconia (4Y-PSZ, Cercon® ht, Dentsply Sirona; n = 12), extra-translucent zirconia (5Y-PSZ, Cercon® xt, Dentsply Sirona; n = 12), and lithium disilicate (IPS e.max® CAD, Ivoclar Vivadent; n = 12). Optical properties, including color change (ΔE), contrast ratio (CR), and translucency parameter (TP), were measured before and after artificial aging. Artificial aging was simulated by autoclaving specimens at 2 bar pressure and 134°C for 5 hours, equivalent to approximately 10–15 years of clinical aging. Data were tested for normality and expressed as mean ± standard deviation. Statistical analyses were conducted using parametric tests, with the significance level at p ≤ 0.05. Results: Lithium disilicate demonstrated the highest color stability following artificial aging (ΔE = 1.73 ± 0.16), outperforming high-translucent zirconia (4Y-PSZ, ΔE = 2.91 ± 0.23) and extra-translucent zirconia (5Y-PSZ, ΔE = 2.73 ± 0.30). It also exhibited the closest initial translucency to enamel (TP = 16.05 ± 0.12), significantly higher than 4Y-PSZ (TP = 11.99 ± 0.19) and 5Y-PSZ (TP = 13.59 ± 0.19). Artificial aging resulted in reduced translucency for all materials, with lithium disilicate showing the smallest decrease (ΔTP = –0.52 ± 0.17), compared to 4Y-PSZ (ΔTP = –1.01 ± 0.41) and 5Y-PSZ (ΔTP = –0.95 ± 0.31). These changes, although statistically significant, were likely clinically imperceptible. Conclusion: Lithium disilicate demonstrated superior resistance to artificial aging, maintaining better color stability and translucency compared to high- and extra-translucent zirconia. Its optical properties, closely resembling natural enamel, highlight its clinical advantage for long-term esthetic restorations. While aging-induced changes were observed in all materials, these were unlikely to be clinically perceptible.


PDF Share
  1. Zhang F, Reveron H, Spies BC, et al. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019;91:24–34. DOI: 10.1016/j.actbio.2019.04.043
  2. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, et al. Contemporary dental ceramic materials, a review: chemical composition, physical and mechanical properties, indications for use. Open Access Maced J Med Sci 2018;6(9):1742–1755. DOI: 10.3889/oamjms.2018.378
  3. Denry I, Holloway JA. Ceramics for dental applications: a review. Materials 2010;3(1):351–368. DOI: 10.3390/ma3010351
  4. Huang B, Chen M, Wang J, et al. Advances in zirconia-based dental materials: properties, classification, applications, and future prospects. J Dent 2024;147:105111. DOI: 10.1016/j.jdent.2024.105111
  5. Skjold A, Schriwer C, Gjerdet NR, et al. Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns. J Dent 2022;125:104271. DOI: 10.1016/j.jdent.2022.104271
  6. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30(10):1195–1203. DOI: 10.1016/j.dental. 2014.08.375
  7. Yousry M, Hammad I, Halawani ME, et al. Translucency of recent zirconia materials and material-related variables affecting their translucency: a systematic review and meta-analysis. BMC Oral Health 2024;24:309. DOI: 10.1186/s12903-024-04070-7
  8. Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev 2020;56(1):1–23. DOI: 10.1016/j.jdsr.2019.09.002
  9. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27(4):535–543. DOI: 10.1016/j.biomaterials.2005.07.034
  10. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20(1):1–25. DOI: 10.1016/s0142-9612(98)00010-6
  11. Stawarczyk B, Keul C, Eichberger M, et al. Three generations of zirconia: from veneered to monolithic. Part I. Quintessence Int 2017;48(5):369–380. DOI: 10.3290/j.qi.a38057
  12. Lümkemann N, Stawarczyk B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored yttria-stabilized zirconia materials of different formulations. J Prosthet Dent 2021;125(3):518–526. DOI: 10.1016/j.prosdent.2020.01.016
  13. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97(2):140–147. DOI: 10.1177/0022034517737483
  14. Zarone F, Mauro MID, Ausiello P, et al. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health 2019;19:134. DOI: 10.1186/s12903-019-0838-x
  15. Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. J Prosthet Dent 2019;121(4):676–682. DOI: 10.1016/j.prosdent.2018.06.021
  16. Alameldin AML, Shokry TE, El-Kouedi AY. Effect of thickness variation on the translucency of two recent high-translucent monolithic zirconia ceramics. Al-Azhar J Dent Sci 2020;23(4):321–326. DOI: 10.21608/AJDSM.2020.25066.1012
  17. Almohammed SN, Alshorman B, Abu-Naba'a LA. Optical properties of five esthetic ceramic materials used for monolithic restorations: a comparative in vitro study. Ceramics 2022;5(4):961–980. DOI: 10.3390/ceramics5040069
  18. Liu H, Inokoshi M, Xu K, et al. Does speed-sintering affect the optical and mechanical properties of yttria-stabilized zirconia? A systematic review and meta-analysis of in-vitro studies. Jpn Dent Sci Rev 2023;59:312–328. DOI: 10.1016/j.jdsr.2023.08.007
  19. Ziyad TA, Abu-Naba'a LA, Almohammed SN. Optical properties of CAD-CAM monolithic systems compared: three multi-layered zirconia and one lithium disilicate system. Heliyon 2021;7(10):e08151. DOI: 10.1016/j.heliyon.2021.e08151
  20. Vichi A, Fonzar RF, Goracci C, et al. Effect of finishing and polishing on roughness and gloss of lithium disilicate and lithium silicate zirconia reinforced glass ceramic for CAD/CAM systems. Oper Dent 2018;43(1):90–100. DOI: 10.2341/16-381-L
  21. Bai Y, Peng L, Zhu Q. The preparation of the lithium disilicate glass-ceramic with high translucency. J Non-Cryst Solids 2017;457:129–134. DOI: 10.1016/j.jnoncrysol.2016.11.032
  22. Ranjan R, Mittal S, Sharma P, et al. An in-vitro evaluation of grinding and polishing on surface roughness and flexural strength of monolithic zirconia. J Clin Diagn Res DOI: 10.7860/JCDR/2024/69975.20171
  23. Paravina RD, Aleksić A, Tango RN, et al. Harmonization of color measurements in dentistry. Measurement 2021;169:108504. DOI: 10.1016/j.measurement.2020.108504
  24. Dentistry—Guidance on Colour Measurement. Geneva, Switzerland: International Organization for Standardization; 2016. pp. 1–10.
  25. Johnston WM. Color measurement in dentistry. J Dent 2009;37(Suppl 1):e2–e6. DOI: 10.1016/j.jdent.2009.03.011
  26. Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32(12):e327–e337. DOI: 10.1016/j.dental.2016.09.025
  27. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent 2013;110(1):14–20. DOI: 10.1016/S0022-3913(13)60333-9
  28. International Organization for Standardization; 2015. Available from: https://www.iso.org/standard/62373.html. [Accessed April 24, 2024].
  29. Chevalier J, Gremillard L. Zirconia as a biomaterial. In: Ducheyne P, ed. Comprehensive Biomaterials. Elsevier; 2011. pp. 95–108.
  30. Zhang CY, Agingu C, Tsoi JKH, et al. Effects of aging on the color and translucency of monolithic translucent Y-TZP ceramics: a systematic review and meta-analysis of in vitro studies. Biomed Res Int 2021;2021:8875023. DOI: 10.1155/2021/8875023
  31. Fasbinder DJ, Dennison JB, Heys D, et al. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc 2010;141:10S–14S. DOI: 10.14219/jada.archive.2010.0355
  32. Zarone F, Ferrari M, Mangano FG, et al. “Digitally oriented materials”: focus on lithium disilicate ceramics. Int J Dent 2016;2016:9840594. DOI: 10.1155/2016/9840594
  33. Koksal T, Dikbas I. Color stability of different denture teeth materials against various staining agents. Dent Mater J 2008;27(1):139–144. DOI: 10.4012/dmj.27.139
  34. Spies BC, Zhang F, Wesemann C, et al. Reliability and aging behavior of three different zirconia grades used for monolithic four-unit fixed dental prostheses. Dent Mater 2020;36(11):e329–e339. DOI: 10.1016/j.dental.2020.08.002
  35. Lee YK. Criteria for clinical translucency evaluation of direct esthetic restorative materials. Restor Dent Endod 2016;41(3):159–166. DOI: 10.5395/rde.2016.41.3.159
  36. Freitas JS, Souza LFB, Dellazzana FZ, et al. Advanced lithium disilicate: a comparative evaluation of translucency and fatigue failure load to other ceramics for monolithic restorations. J Mech Behav Biomed Mater 2023;148:106192. DOI: 10.1016/j.jmbbm.2023.106192
  37. Yu B, Ahn JS, Lee YK. Measurement of translucency of tooth enamel and dentin. Acta Odontol Scand 2009;67(1):57–64. DOI: 10.1080/00016350802577818
  38. Vardhaman S, Borba M, Kaizer MR, et al. Optical and mechanical properties of the multi-transition zones of a translucent zirconia. J Esthet Restor Dent 2024. DOI: 10.1111/jerd.13319
  39. Johansson C, Tabares SF, Larsson C, et al. Laboratory, clinical-related processing and time-related factors’ effect on properties of high-translucent zirconium dioxide ceramics intended for monolithic restorations a systematic review. Ceramics 2023;6(1):734–797. DOI: 10.3390/ceramics6010045
  40. Lucas TJ, Lawson NC, Janowski GM, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dent Mater 2015;31(12):1487–1492. DOI: 10.1016/j.dental.2015.09.014
  41. Walczak K, Meißner H, Range U, et al. Translucency of zirconia ceramics before and after artificial aging. J Prosthodont 2019;28(1):e319–e324. DOI: 10.1111/jopr.12771
  42. Haralur SB, Alqahtani NRS, Mujayri FA. Effect of hydrothermal aging and beverages on color stability of lithium disilicate and zirconia based ceramics. Medicina (Kaunas) 2019;55(11):749. DOI: 10.3390/medicina55110749
  43. Salama AA, Shehab KA, Bushra SS, et al. The effect of aging on the translucency of contemporary zirconia generations: in-vitro study. BMC Oral Health 2024;24:744. DOI: 10.1186/s12903- 024-04465-6
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.