International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 13 , ISSUE 2 ( April-June, 2023 ) > List of Articles

ORIGINAL RESEARCH

Fracture Resistance of Functionally Graded Three-unit Fixed Partial Denture with Titanium Dioxide and Silica Nanoparticles: An In Vitro Study

Aditi A Kanitkar, Paresh V Gandhi, Ajay V Sabane, Vijaysingh More, Aneesh S Kanitkar, Rajashree Jadhav

Keywords : Aging, Nanotechnology, Reliability, Silica nanoparticle, Three-unit monolithic zirconia prostheses, Titanium dioxide nanoparticle

Citation Information : Kanitkar AA, Gandhi PV, Sabane AV, More V, Kanitkar AS, Jadhav R. Fracture Resistance of Functionally Graded Three-unit Fixed Partial Denture with Titanium Dioxide and Silica Nanoparticles: An In Vitro Study. Int J Prosthodont Restor Dent 2023; 13 (2):94-103.

DOI: 10.5005/jp-journals-10019-1413

License: CC BY-NC 4.0

Published Online: 28-06-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Purpose: The objective of this study was to assess the fracture resistance of functionally graded monolithic zirconia with different nanoparticles in three-unit fixed dental prostheses (FDPs) after undergoing thermal and mechanical aging. Materials and methods: A total of 32 three-unit monolithic zirconia prostheses were machined and randomly assigned to four groups (n = 8 each) as Group A—control group (without any nanoparticle), Group B—titania sol group, Group C—silica sol group, and Group D—silica and titania nano-sol group. Grading with nanoparticles was carried out on presintered monolithic zirconia and then was sintered. Fixed prostheses were exposed to thermocycling for 5–55°C for 10,000 cycles. The long-term clinical performance of monolithic zirconia was assessed by quasi-static fracture strength of 0–300 N for 1,00,000 cycles. After following loading conditions, prostheses were loaded until fracture. Fracture mode and evaluation of nanoparticles were seen under a field-emission scanning electron microscope (FE-SEM). Energy dispersive spectroscopy (EDS) was done to find an elemental composition of nanoparticles in zirconia. Weibull's modulus implies the reliability of material for each of the four materials. Kruskal–Wallis analysis of variance (ANOVA) followed by a post hoc test done for the between-group differences in the maximum load-bearing capacity of the four groups. Results: Significant variance (p = 0.001) in the fracture resistance of three-unit FDPs after mechanical and thermal cycling was observed. The fracture resistance of the control group A (703.60 N) was significantly lesser than that of the titania sol group B (1031.35 N) and silica and titania nano-sol group D (1094.74 N). Weibull moduli values of all four groups are as follows in descending order groups D > A > B > C. Conclusion: Functional grading of monolithic zirconia with silica and titanium dioxide nanoparticles can increase the fracture resistance of three-unit FDPs after aging. The addition of titanium to zirconia has been shown to increase the Weibull modulus, which corresponds to a higher level of homogeneity of the material and more excellent reliability as a structural material.


HTML PDF Share
  1. Kohorst P, Herzog TJ, Borchers L, et al. Load-bearing capacity of all-ceramic posterior four-unit fixed partial dentures with different zirconia frameworks. Eur J Oral Sci 2007;115(2):161–166. DOI: 10.1111/j.1600-0722.2007.00429.x
  2. Sailer I, Fehér A, Filser F, et al. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20(4):383–388. PMID: 17695869.
  3. Dal Piva AMO, Tribst JPM, Benalcázar Jalkh EB, et al. Minimal tooth preparation for posterior monolithic ceramic crowns: effect on the mechanical behavior, reliability and translucency. Dent Mater 2021;37(3):e140–e150. DOI: 10.1016/j.dental.2020.11.001
  4. Deville S, Gremillard L, Chevalier J, et al. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B Appl Biomater 2005;72(2):239–245. DOI: 10.1002/jbm.b.30123
  5. Alraheam IA, Donovan T, Boushell L, et al. Fracture load of two thicknesses of different zirconia types after fatiguing and thermocycling. J Prosthet Dent 2020;123(4):635–640. DOI: 10.1016/j.prosdent.2019.05.012
  6. Alghazzawi TF, Lemons J, Liu PR, et al. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont 2012;21(5):363–369. DOI: 10.1111/j.1532-849X.2011.00838.x
  7. al-Wahadni A, Martin DM. Glazing and finishing dental porcelain: a literature review. J Can Dent Assoc 1998;64(8):580–583. PMID: 9785688.
  8. Ban S, Sato H, Suehiro Y, et al. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B Appl Biomater 2008;87(2):492–498. DOI: 10.1002/jbm.b.31131
  9. Pereira G, Amaral M, Cesar PF, et al. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed Mater 2015;45:183–192. DOI: 10.1016/j.jmbbm.2014.12.009
  10. Cotič J, Kocjan A, Panchevska S, et al. In vivo ageing of zirconia dental ceramics - Part II: Highly-translucent and rapid-sintered 3Y-TZP. Dent Mater 2021;37(3):454–463. DOI: 10.1016/j.dental.2020.11.019
  11. Sato T, Shimada M. Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water. J Am Ceram Soc 1985;68:356–359.
  12. Yoshimura M, Noma T, Kawabata K, Somiya S. Role of H 2 O on the degradation process of Y-TZP. J Mater Sci Lett 1987;6:465–467.
  13. Flinn BD, de Groot DA, Mancl LA, et al. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent 2012;108(4):223–230. DOI: 10.1016/S0022-3913(12)60166-8
  14. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010;26(8):807–820. DOI: 10.1016/j.dental.2010.04.006
  15. Becher PF, Swain MV, Ferber MK. Relation of transformation temperature to the fracture toughness of transformation-toughened ceramics. J Mater Sci 1987;22:76–84. DOI: 10.1007/BF01160553
  16. Moqbel NM, Al-Akhali M, Wille S, et al. Influence of aging on biaxial flexural strength and hardness of translucent 3Y-TZP. Materials (Basel) 2019;13(1):27. DOI: 10.3390/ma13010027
  17. Denry I, Abdelaal M, Dawson DV, et al. Effect of crystalline phase assemblage on reliability of 3Y-TZP. J Prosthet Dent 2021;126(2):238–247. DOI: 10.1016/j.prosdent.2020.05.023
  18. Ozcan M, Melo RM, Souza RO, et al. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater 2013;20:19–28. DOI: 10.1016/j.jmbbm.2013.01.005
  19. Kelch M, Schulz J, Edelhoff D, et al. Impact of different pretreatments and aging procedures on the flexural strength and phase structure of zirconia ceramics. Dent Mater 2019;35(10):1439–1449. DOI: 10.1016/j.dental.2019.07.020
  20. Bohidar SK, Sharma R, Mishra PR. Functionally graded materials: a critical review. Int J Res 2014;1(7):289–301.
  21. Zhang Y, Chai H, Lawn BR. Graded structures for all-ceramic restorations. J Dent Res 2010;89(4):417–421. DOI: 10.1177/0022034510363245
  22. Campos TM, Ramos NC, Machado JP, et al. A new silica-infiltrated Y-TZP obtained by the sol-gel method. J Dent 2016;48:55–61. DOI: 10.1016/j.jdent.2016.03.004
  23. Villefort RF, Amaral M, Pereira GK, et al. Effects of two grading techniques of zirconia material on the fatigue limit of full-contour 3-unit fixed dental prostheses. Dent Mater 2017;33(4):e155–e164. DOI: 10.1016/j.dental.2016.12.010
  24. Kim JW, Liu L, Zhang Y. Improving the resistance to sliding contact damage of zirconia using elastic gradients. J Biomed Mater Res B Appl Biomater 2010;94(2):347–352. DOI: 10.1002/jbm.b.31657
  25. Shahramian K, Abdulmajeed A, Kangasniemi I, et al. TiO2 coating and UV photofunctionalization enhance blood coagulation on zirconia surfaces. Biomed Res Int 2019;2019:8078230. DOI: 10.1155/2019/8078230
  26. Dos Santos AF, Sandes de Lucena F, Sanches Borges AF, et al. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: synthesis of nanotubes, surface characterization, and bond strength. J Prosthet Dent 2018;120(4):589–595. DOI: 10.1016/j.prosdent.2017.10.027
  27. Su Z, Li M, Zhang L, et al. A novel porous silica-zirconia coating for improving bond performance of dental zirconia. J Zhejiang Univ Sci B 2021;22(3):214–222. DOI: 10.1631/jzus.B2000448
  28. Mezarina-Kanashiro FN, Bronze-Uhle ES, Rizzante FAP, et al. A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP. Dent Mater 2022;38(8):e220–e230. DOI: 10.1016/j.dental.2022.06.015
  29. Pillai S, Hehir S. Sol-gel materials for energy, environment and electronic applications.2017 Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham.
  30. Schmitter M, Mussotter K, Rammelsberg P, et al. Clinical performance of extended zirconia frameworks for fixed dental prostheses: two-year results. J Oral Rehabil 2009;36(8):610–615. DOI: 10.1111/j.1365-2842.2009.01969.x
  31. Sawada T, Schille C, Zöldföldi J, et al. Influence of a surface conditioner to pre-sintered zirconia on the biaxial flexural strength and phase transformation. Dent Mater 2018;34(3):486–493. DOI: 10.1016/j.dental.2017.12.004
  32. Sarıkaya I, Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health 2018;18(1):146. DOI: 10.1186/s12903-018-0618-z
  33. Oblak C, Kocjan A, Jevnikar P, et al. The effect of mechanical fatigue and accelerated ageing on fracture resistance of glazed monolithic zirconia dental bridges. J Eur Ceram Soc 2017;37(14):4415–4422. DOI: 10.1016/j.jeurceramsoc.2017.04.048
  34. Özcan M, Jonasch M. Effect of cyclic fatigue tests on aging and their translational implications for survival of all-ceramic tooth-borne single crowns and fixed dental prostheses. J Prosthodont 2018;27(4):364–375. DOI: 10.1111/jopr.12566
  35. Kondo T, Komine F, Honda J, et al. Effect of veneering materials on fracture loads of implant-supported zirconia molar fixed dental prostheses. J Prosthodont Res 2019;63(2):140–144. DOI: 10.1016/j.jpor.2018.10.006
  36. Nakamura K, Ankyu S, Nilsson F, et al. Critical considerations on load-to-failure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2018;87:180–189. DOI: 10.1016/j.jmbbm.2018.07.034
  37. Quinn JB, Quinn GD. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 2010;26(2):135–147. DOI: 10.1016/j.dental.2009.09.006
  38. Chatterjee N, Ghosh A. Current scenario on adhesion to zirconia; surface pretreatments and resin cements: a systematic review. J Indian Prosthodont Soc 2022;22(1):13–20. DOI: 10.4103/jips.jips_478_21
  39. Kosmac T, Oblak C, Jevnikar P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15(6):426–433. DOI: 10.1016/s0109-5641(99)00070-6
  40. Guazzato M, Quach L, Albakry M, et al. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33(1):9–18. DOI: 10.1016/j.jdent.2004.07.001
  41. Balakrishnan A, Panigrahi BB, Chu MC, et al. Improvement in mechanical properties of sintered zirconia (3% yttria stabilized) by glass infiltration. J Mater Res 2011;22(9):2550–2557. DOI: 10.1557/jmr.2007.0325
  42. Campos TMB, Ramos NC, Matos JDM, et al. Silica infiltration in partially stabilized zirconia: effect of hydrothermal aging on mechanical properties. J Mech Behav Biomed Mater 2020;109:103774. DOI: 10.1016/j.jmbbm.2020.103774
  43. Samodurova A, Kocjan A, Swain MV, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomater 2015;11:477–487. DOI: 10.1016/j.actbio.2014.09.009
  44. Nakamura T, Usami H, Ohnishi H, et al. The relationship between milling a new silica-doped zirconia and its resistance to low-temperature degradation (LTD): a pilot study. Dent Mater J 2012;31(1):106–112. DOI: 10.4012/dmj.2011-048
  45. Diebold U. The surface science of titanium dioxide. Surf Sci Rep 2003;48(5–8):53–229. DOI: 10.1016/S0167-5729(02)00100-0
  46. Jowkar Z, Hamidi SA, Shafiei F, et al. The effect of silver, zinc oxide, and titanium dioxide nanoparticles used as final irrigation solutions on the fracture resistance of root-filled teeth. Clin Cosmet Investig Dent 2020;12:141–148. DOI: 10.2147/CCIDE.S253251
  47. Miranda RBP, Miranda WG Junior, Lazar DRR, et al. Effect of titania content and biomimetic coating on the mechanical properties of the Y-TZP/TiO2composite. Dent Mater 2018;34(2):238–245. DOI: 10.1016/j.dental.2017.11.003
  48. Zeng XM, Du Z, Schuh CA, et al. Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia. J Eur Ceram Soc 2016;36(5):1277–1283. DOI: 10.1016/j.jeurceramsoc.2015.11.042
  49. Miao X, Sun D, Hoo PW, et al. Effect of titania addition on yttria-stabilised tetragonal zirconia ceramics sintered at high temperatures. Ceram Int 2004;30(6):1041–1047. DOI: 10.1016/j.ceramint.2003.10.025
  50. Shahramian K, Leminen H, Meretoja V, et al. Sol–gel derived bioactive coating on zirconia: effect on flexural strength and cell proliferation. J Biomed Mater Res B Appl Biomater 2017;105(8):2401–2407. DOI: 10.1002/jbm.b.33780
  51. Jokinen M, Pätsi M, Rahiala H, et al. Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method. J Biomed Mater Res 1998;42(2):295–302. DOI: 10.1002/(sici)1097-4636(199811)42:2<295::aid-jbm15>3.0.co;2-i
  52. Lazar A, Kosmač T, Zavašnik J, et al. TiN-nanoparticulate-reinforced ZrO2 for electrical discharge machining. Materials 2019;12(17):2789. DOI: 10.3390/ma12172789
  53. Uno M, Kurachi M, Wakamatsu N, et al. Effects of adding silver nanoparticles on the toughening of dental porcelain. J Prosthet Dent 2013;109(4):241–247. DOI: 10.1016/S0022-3913(13)60052-9
  54. Karthikeyan V, Chander NG, Reddy JR, et al. Effects of incorporation of silver and titanium nanoparticles on feldspathic ceramic toughness. J Dent Res Dent Clin Dent Prospects 2019;13(2):98–102. DOI: 10.15171/joddd.2019.015
  55. Hwang SL, Chen IW. Grain size control of tetragonal zirconia polycrystals using the space charge concept. J Am Ceram Soc 1990;73(11):3269–3277. DOI: 10.1111/j.1151-2916.1990.tb06449.x
  56. Lupulescu A, Glicksman ME. Diffusion-limited crystal growth in silicate systems: similarity with high-pressure liquid-phase sintering. J Cryst Growth 2000;211(1–4):49–61. DOI: 10.1016/S0022-0248(99)00841-6
  57. Kelly JR. Clinical failure of dental ceramic structures: insights from combined fractography, in vitro testing and finite element analysis. Ceram Trans 1995;48:125–137.
  58. Ritter JE. Predicting lifetimes of materials and material structures. Dent Mater 1995;11(2):142–146. DOI: 10.1016/0109-5641(95)80050-6
  59. Wachtman JB. Mechanical properties of ceramics. 1st ed. New York: John
  60. Bona AD, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramicstructures. Dent Mater 2003;19:662–669. DOI: 10.1016/S0109-5641(03)00010-1
  61. de Paula Miranda RB, Leite TP, Pedroni ACF, et al. Effect of titania addition and sintering temperature on the microstructure, optical, mechanical and biological properties of the Y-TZP/TiO2 composite. Dent Mater 2020;36(11):1418–1429. DOI: 10.1016/j.dental.2020.08.014
  62. Kanitkar AA, Gandhi P, Kanitkar A, et al. Aging resistance of infiltrated monolithic zirconia compared to noninfiltrated monolithic zirconia: a systematic review of in vitro studies. J Indian Prosthodont Soc 2022;22(2):131–142. DOI: 10.4103/jips.jips_437_21
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.