Evaluation of the Effect of Cement Shade and Accelerated Artificial Aging on Color Stability of CAD/CAM Resin-matrix Ceramics: An In Vitro Study
Arife Dogan, Mustafa Solmazgul
Citation Information :
Dogan A, Solmazgul M. Evaluation of the Effect of Cement Shade and Accelerated Artificial Aging on Color Stability of CAD/CAM Resin-matrix Ceramics: An In Vitro Study. Int J Prosthodont Restor Dent 2021; 11 (4):159-167.
Aim and objective: This study was conducted to examine the effect of cementation and artificial aging on color stability of three resin-matrix ceramic CAD/CAM materials.
Materials and methods: About 12 × 14 × 1.0 mm rectangular-shaped specimens were prepared from a hybrid ceramic (Vita Enamic), a hybrid resin nano-ceramic (Cerasmart), and a resin nano-ceramic (Lava Ultimate) (n = 30). Specimens of each material were luted with three shades of a resin cement in 0.2 mm thickness (Variolink N; A1, Bleach XL and Transparent), followed by artificial aging step (n = 10). Color coordinates were measured in each step with a colorimeter. Color differences (ΔE00) were calculated from CIEDE2000 formula, and statistically analyzed with one-way ANOVA and paired t-tests.
Results: For each material type, Bleach XL shade luting yielded the highest color change when compared to other two shades (p < 0.05). Artificially aging the specimens resulted in a significant increase in ΔE00 regardless of shade and material type (p < 0.05). No significant color differences due to artificial aging were detected when the three shades were compared for only Vita Enamic samples (p > 0.05). Luting with different shades of resin cement did not result in a statistical difference in ΔE00 between the restorative materials (p < 0.05) except for Cerasmart luted with Bleach XL (p < 0.05); however, artificial aging led to statistically significant differences between the materials when luted with the same shade of the resin cement (p < 0.05).
Conclusion: The final color of resin-matrix ceramics is affected by the resin cement shade and artificial aging.
Albero A, Pascual A, Camps I, et al. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent 2015;7(4):e495–e500. DOI: 10.4317/jced.52521
Babu PJ, Alla RK, Alluri VR, et al. Dental ceramics: Part I-An overview of composition, structure and properties. Am J Mater Eng Technol 2015;3(1):13–18. DOI: 10.12691/materials-3-1-3
Aiqahtani MQ, Aljurais RM, Alshaafi MM. The effects of different shades of resin luting cement on the color of ceramic veneers. Dent Mater J 2012;31(3):354–361. DOI: 10.4012/dmj.2011-268
Attia A, Abdelaziz KM, Freitag S, et al. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J Prosthet Dent 2006;95(2):117–123. DOI: 10.1016/j.prosdent.2005.11.014
Attia A, Kern M. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. J Prosthet Dent 2004;92(6):551–556. DOI: 10.1016/j.prosdent.2004.09.002
Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015;114(6):587–593. DOI: 10.1016/j.prosdent.2015.04.016
Mainjot AK, Dupont NM, Oudkerk JC, et al. From artisanal to CAD-CAM blocks: State of the art of indirect composites. J Dent Res 2016;95(5):487–495. DOI: 10.1177/0022034516634286
Mühlemann S, Bernini JM, Sener B, et al. Effect of aging on stained monolithic resin-ceramic CAD/CAM materials: quantitative and qualitative analysis of surface roughness. J Prosthodont 2019;28(2):563–571. DOI: 10.1111/jopr.12949
Alharbi A, Ardu S, Bortolotto T, et al. Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices. Odontology 2017;105(2):162–169. DOI: 10.1007/s10266-016-0258-1
Goujat A, Abouelleil H, Colon P, et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent 2018;119(3):384–389. DOI: 10.1016/j.prosdent.2017.03.001
Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth. J Dent Res 2018;97(10):1082–1091. DOI: 10.1177/0022034518779759
Stawarczyk B, Liebermann A, Eichberger M, et al. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2016;55:1–11. DOI: 10.1016/j.jmbbm.2015.10.004
Gracis S, Thompson VP, Ferencz JL, et al. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015;28(3):227–35. DOI: 10.11607/ijp.4244
Arocha MA, Basilio J, Llopis J, et al. Colour stainability of indirect CAD–CAM processed composites vs. conventionally laboratory processed composites after immersion in staining solutions. J Dent 2014;42(7):831–838. DOI: 10.1016/j.jdent.2014.04.002
He L, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater 2011;27(6):527–534. DOI: 10.1016/j.dental.2011.02.002
He L, Purton D, Swain M. A novel polymer infiltrated ceramic for dental simulation. J Mater Sci Mater Med 2011;22(7):1639–1643. DOI: 10.1007/s10856-011-4350-3
Turgut S, Bagis B, Turkaslan SS, et al. Effect of ultraviolet aging on translucency of resin-cemented ceramic veneers: an in vitro study. J Prosthodont 2014;23(1):39–44. DOI: 10.1111/jopr.12061
Zeighami S, Hemmati YB, Falachai SM. Effect of ceramic thickness and cement color on final shade of all ceramic restorations: a systematic review. Sch Acad J Biosci 2017;5(6):425–432. DOI: 10.21276/sajb
Turgut S, Bagis B. Colour stability of laminate veneers: an in vitro study. J Dent 2011;39: 57–64. DOI: 10.1016/j.jdent.2011.11.006
Commission Internationale del'Eclairage. CIE Technical Report: Colorimetry. CIEPub. No.15, third edition. Vienna: CIE Central Bureau, 2004: 1–82.
Ghinea R, Pérez MM, Herrera LJ, et al. Color difference thresholds in dental ceramics. J Dent 2010;38(Suppl. 2):e57–e64. DOI: 10.1016/j.jdent.2010.07.008
Peixoto RT, Paulinelli VMF, Sander HH, et al. Light transmission through porcelain. Dent Mater 2007;23(11):1363–1368. DOI: 10.1016/j.dental.2006.11.025
Turgut S, Bagis B. Effect of resin cement and ceramic thickness on final color of laminate veneers: an in vitro study. J Prosthet Dent 2013;109(3):179–186. DOI: 10.1016/S0022-3913(13)60039-6
Vichi A, Sedda M, Fonzar RF, et al. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J Esthet Restor Dent 2016;28(Suppl 1):32–39. DOI: 10.1111/jerd.12172
Chu SJ, Trushkowsky RD, Paravina RD. Dental color matching instruments and systems. review of clinical and research aspects. J Dent 2010;38(Suppl 2):e2–e16. DOI: 10.1016/j.jdent.2010.07.001
Ardu S, Braut V, Di Bella E, et al. Influence of background on natural tooth color coordinates: an in vivo evaluation. Odontology 2014;102(2):267–271. DOI: 10.1007/s10266-013-0126-1
Arocha MA, Mayoral JR, Lefever D, et al. Color stability of siloranes versus methacrylate-based composites after immersion in staining solutions. Clin Oral Investig 2013;17(6):1481–1487. DOI: 10.1007/s00784-012-0837-7
Acar O, Yilmaz B, Altintas SH, et al. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent 2016;115(1):71–75. DOI: 10.1016/j.prosdent.2015.06.014
Pop-Ciutrila IS, Dudea D, Badea ME, et al. color, and translucency differences between human dentine and a CAD/CAM hybrid ceramic system. J Esthet Restor Dent 2016;28(Suppl 1):46–55. DOI: 10.1111/jerd.12195
Karaokutan I, Yilmaz Savas T, Aykent F, et al. Color stability of CAD/CAM fabricated inlays after accelerated artificial aging. J Prosthodont 2016;25(6):472–477. DOI: 10.1111/jopr.12353
Heydecke G, Zhang F, Razzoog ME. In vitro color stability of double-layer veneers after accelerated aging. J Prosthet Dent 2001;85(6):551–557. DOI: 10.1067/mpr.2001.115385
Kilinc H, Turgut S. Optical behaviors of esthetic CAD-CAM restorations after different surface finishing and polishing procedures and UV aging: an in vitro study. J Prosthet Dent 2018;120(1):107–113. DOI: 10.1016/j.prosdent.2017.09.019
Liebermann A, Vehling D, Eichberger M, et al. Impact of storage media and temperature on color stability of tooth-colored CAD/CAM materials for final restorations. J Appl Biomater Funct Mater 2019;17(4):2280800019836832. DOI: 10.1177/2280800019836832
Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006;22(3):211–222. DOI: 10.1016/j.dental.2005.05.005
Van Landuyt KL, Snauwaert J, De Munck J, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007;28(26):3757–3785. DOI: 10.1016/j.biomaterials.2007.04.044
Gajewski WE, Pfeifer CS, Froes-Salgado NR, et al. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012;23(5):508–514. DOI: 10.1590/s0103-64402012000500007
Druck CC, Pozzobon JL, Callegari GL, et al. Adhesion to Y-TZP ceramic: study of nanofilm coating on the surface of Y-TZP. J Biomed Res Part B: Appl. Biomater 2015;103(1):143–150. DOI: 10.1002/jbm.b.33184
Cruvinel DR, Garcia LFR, Consani S, et al. Composites associated with pulp-protection material: color-stability analysis after accelerated artificial aging. Eur J Dent 2010;4(1):6–11.
Lauvahutanon S, Takahashi H, Shiozawa M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J 2014;33(5):705–710. DOI: 10.4012/dmj.2014-208
Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water? effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Res 1998;42(3):465–472. DOI: 10.1002/(sici)1097-4636(19981205)42:3<465::aid-jbm17>3.0.co;2-f