International Journal of Prosthodontics and Restorative Dentistry

Register      Login

VOLUME 11 , ISSUE 1 ( January-March, 2021 ) > List of Articles

RESEARCH ARTICLE

Color Stability, Translucency, and Wettability of a Lithium Disilicate Dental Ceramics Submitted to Different Surface Treatments

Eduardo J Soares, Rebeca F de Lima Oliveira, Francisca D Jardilino Silame, Rafaella Tonani-Torrieri, Rodrigo Franca, Fernanda de Carvalho Panzeri Pires-de-Souza

Keywords : Ceramic bonding, Color stability, Lithium disilicate, Translucency, Wettability

Citation Information : Soares EJ, Oliveira RF, Silame FD, Tonani-Torrieri R, Franca R, Pires-de-Souza FD. Color Stability, Translucency, and Wettability of a Lithium Disilicate Dental Ceramics Submitted to Different Surface Treatments. Int J Prosthodont Restor Dent 2021; 11 (1):4-8.

DOI: 10.5005/jp-journals-10019-1304

License: CC BY-NC 4.0

Published Online: 12-08-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim and objective: This study aimed to evaluate the color stability, translucency, and wettability of a lithium disilicate dental ceramic. Materials and methods: Forty specimens (6 × 1 mm) of lithium disilicate dental ceramic were fabricated. Initial color and translucency readings were measured using a spectrophotometer. Then, the specimens were randomly separated into four groups (n = 10), according to the different types of surface treatment (control: control group; HF + S: hydrofluoric acid gel and silane; Al + HF + S: Al2O3, hydrofluoric acid gel, and silane; Al + S: Al2O3 and silane) and new color and translucency readings were done. The wettability was analyzed using the sessile drop method in all specimens, and the results were statistically analyzed using one-way ANOVA and the Tukey test (p < 0.05). Results: The results showed higher color and translucency changes to the groups treated (HF + S, Al + HF + S, and Al + S), different (p < 0.05) from the control group, and without significance between them. All groups demonstrated different wettability (p < 0.05), lower for the control group. Conclusion: It is possible to conclude that the surface treatment can influence the color, translucency, and wettability of lithium disilicate dental ceramics.


PDF Share
  1. Stawarczyk B, Liebermann A, Eichberger M, et al. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2016;55:1–11. DOI: 10.1016/j.jmbbm.2015.10.004.
  2. Bagis B, Turgut S. Optical properties of current ceramics systems for laminate veneers. J Dent 2013;41:e24–e30. DOI: 10.1016/j.jdent.2012.11.013.
  3. Wang H, Xiong F, Zhenhua L. Influence of varied surface texture of dentin porcelain on optical properties of porcelain specimens. J Prosthet Dent 2011;105(4):242–248. DOI: 10.1016/S0022-3913(11)60039-5.
  4. van de Sande FH, Opdam NJ, Da Rosa Rodolpho PA, et al. Patient risk factors’ influence on survival of posterior composites. J Dent Res 2013;92(7_suppl):S78–S83. DOI: 10.1177/0022034513484337.
  5. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater 2003;19(7):603–611. DOI: 10.1016/S0109-5641(03)00002-2.
  6. Borba M, de Araújo MD, Fukushima KA, et al. Effect of the microstructure on the lifetime of dental ceramics. Dent Mater 2011;27(7):710–721. DOI: 10.1016/j.dental.2011.04.003.
  7. Della Bona A, Mecholsky JJ, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dent Mater 2004;20(10):956–962. DOI: 10.1016/j.dental.2004.02.004.
  8. Ferracane JL. Resin composite--state of the art. Dent Mater 2011;27(1):29–38. DOI: 10.1016/j.dental.2010.10.020.
  9. Gonzaga CC, Cesar PF, Miranda WG, et al. Slow crack growth and reliability of dental ceramics. Dent Mater 2011;27(4):394–406. DOI: 10.1016/j.dental.2010.10.025.
  10. Addison O, Marquis PM, Fleming GJP. The impact of hydrofluoric acid surface treatments on the performance of a porcelain laminate restorative material. Dent Mater 2007;23(4):461–468. DOI: 10.1016/j.dental.2006.03.002.
  11. Vichi A, Ferrari M, Davidson CL. Influence of ceramic and cement thickness on the masking of various types of opaque posts. J Prosthet Dent 2000;83(4):412–417. DOI: 10.1016/S0022-3913(00)70035-7.
  12. Barath VS, Faber FJ, Westland S. Spectrophotometric analysis of all-ceramic materials and their interaction with luting agents and different backgrounds. Adv Dent Res 2003;17(1):55–60. DOI: 10.1177%2F154407370301700113.
  13. Öztürk E, Chiang Y-C, Coşgun E. Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics. J Dent 2013;41:e8–e14. DOI: 10.1016/j.jdent.2013.06.001.
  14. Bayindir F, Koseoglu M. The effect of restoration thickness and resin cement shade on the color and translucency of a high-translucency monolithic zirconia. J Prosthet Dent 2020;123(1):149–154. DOI: 10.1016/j.prosdent.2018.11.002.
  15. Addison O, Marquis PM, Fleming GJP. Adhesive luting of all-ceramic restorations-The impact of cementation variables and short-term water storage on the strength of a feldspathic dental ceramic. J Adhes Dent 2008;10(4):285–293. DOI: 10.3290/j.jad.a13739.
  16. Hayakawa T, Horie K, Aida M. The influence of surface conditions and silane agents on the bond of resin to dental porcelain. Dent Mater 1992;8(4):238–240. DOI: 10.1016/0109-5641(92)90092-Q.
  17. Turgut S, Bağış B, Korkmaz FM. Do surface treatments affect the optical properties of ceramic veneers? J Prosthet Dent 2014;112(3):618–624. DOI: 10.1016/j.prosdent.2014.04.001.
  18. El Gamal A, Medioni E, Rocca JP. Shear bond, wettability, and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces. Lasers Med Sci 2017;32(4):779–785. DOI: 10.1007/s10103-017-2171-4.
  19. Yavuz T, Özyılmaz ÖY, Dilber E. Effect of Different Surface Treatments on Porcelain-Resin Bond Strength. J Prosthodont 2017;26(5):446–454. DOI: 10.1111/jopr.12387.
  20. Kara HB, Dilber E, Koc O. Effect of different surface treatments on roughness of IPS Empress 2 ceramic. Lasers Med Sci 2012;27(2):267–272. DOI: 10.1007/s10103-010-0860-3.
  21. Barghi N, Berry T, Chung K. Effects of timing and heat treatment of silanated porcelain on the bond strength. J Oral Rehabil 2000;27(5):407–412. DOI: 10.1046/j.1365-2842.2000.00508.x.
  22. Yavuz T, Dilber E, Kara HB. Effects of different surface treatments on shear bond strength in two different ceramic systems. Lasers Med Sci 2013;28(5):1233–1239. DOI: 10.1007/s10103-012-1201-5.
  23. Devigus A, Lombardi G, Shading Vita In-ceram YZ. substructures: influence on value and chroma, part II. Int J Comput Dent 2004;7(4):379–388.
  24. Devigus A, Lombardi G. Shading Vita YZ substructures: influence on value and chroma, part I. Int J Comput Dent 2004;7(3):293–301.
  25. Paravina RD, Ghinea R, Herrera LJ. Color difference thresholds in dentistry. J Esthet Restor Dent 2015;27:S1–S9. DOI: 10.1111/jerd.12149.
  26. Salas M, Lucena C, Herrera LJ. Translucency thresholds for dental materials. Dent Mater 2018;34(8):1168–1174. DOI: 10.1016/j.dental.2018.05.001.
  27. Perroni AP, Kaizer MR, Della Bona A. Influence of light-cured luting agents and associated factors on the color of ceramic laminate veneers: A systematic review of in vitro studies. Dent Mater 2018;34(11):1610–1624. DOI: 10.1016/j.dental.2018.08.298.
  28. Pecho OE, Perez MM, Lightness GR. Chroma and hue differences on visual shade matching. Dent Mater 2016;32(11):1362–1373. DOI: 10.1016/j.dental.2016.08.218.
  29. Haralur SB, Alqahtani NRS, Mujayri FA. Effect of hydrothermal aging and beverages on color stability of lithium disilicate and zirconia based ceramics. Medicina 2019;55(11):749. DOI: 10.3390/medicina55110749.
  30. Dos Santos DM, Da Silva EVF, Watanabe D. Effect of different acidic solutions on the optical behavior of lithium disilicate ceramics. J Prosthet Dent 2017;118(3):430–436. DOI: 10.1016/j.prosdent.2016.10.023.
  31. Palla ES, Kontonasaki E, Kantiranis N. Color stability of lithium disilicate ceramics after aging and immersion in common beverages. J Prosthet Dent 2018;119(4):632–642. DOI: 10.1016/j.prosdent.2017.04.031.
  32. Turgut S, Bagis B, Ayaz EA. How will surface treatments affect the translucency of porcelain laminate veneers? J Adv Prosthodont 2014;6(1):8–13. DOI: 10.4047/jap.2014.6.1.8.
  33. Paravina RD, Pérez MM, Ghinea R. Acceptability and perceptibility thresholds in dentistry: comprehensive review of clinical and research applications. J Esthet Restor Dent 2019;31(2):103–112. DOI: 10.1111/jerd.12465.
  34. França R, Bebsh M, Haimeur A. Physicochemical surface characterizations of four dental CAD/CAM lithium disilicate-based glass ceramics on HF etching: An XPS study. Ceram Int 2020;46(2):1411–1418. DOI: 10.1016/j.ceramint.2019.09.105.
  35. Motro PFK, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics. J Prosthet Dent 2012;108(4):231–237. DOI: 10.1016/S0022-3913(12)60168-1.
  36. Dilber A, Yavuz T, Kara HB. Comparison of the effects of surface treatments on roughness of two ceramic systems. Photomed Laser Surg 2012;30(6):308–314. DOI: 10.1089/pho.2011.3153.
  37. Lima CM, da Silva NR, Martins JD. Effect of different surface treatments on the biaxial flexure strength, Weibull characteristics, roughness, and surface topography of bonded CAD/CAM silica-based ceramics. Dent Mat 2020;37(3):e151–e161. DOI: 10.1016/j.dental.2020. 11.009.
  38. Yildirim B, Recen D, Simsek AT. Effect of cement color and tooth-shaded background on the final color of lithium disilicate and zirconia-reinforced lithium silicate ceramics: An in vitro study. J Esthet Restor Dent 2021;33(2):380–386. DOI: 10.1111/jerd.12611.
  39. Vasiliu RD, Porojan SD, Bîrdeanu MI. Effect of thermocycling, surface treatments and microstructure on the optical propertiesand roughness of CAD-CAM and heat-pressed glass ceramics. Materials 2020;13(2):381. DOI: 10.3390/ma13020381.
  40. Porojan L, Vasiliu RD, Bîrdeanu MI. Surface characterization and optical properties of reinforced dental glass-ceramics related to artificial aging. Molecules 2020;25(15):3407. DOI: 10.3390/molecules25153407.
  41. Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent Mat 2012;28(5):467–477. DOI: 10.1016/j.dental.2012.02.009.
  42. Ramakrishnaiah R, Alkheraif AA, Divakar DD. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci 2016;17(6):822. DOI: 10.3390/ijms17060822.
  43. Lawson NC, Jurado CA, Huang CT. Effect of surface treatment and cement on fracture load of tradicional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns. J Prosthodont 2019;28(6):659–665. DOI: 10.1111/jopr.13088.
  44. Strasser T, Preis V, Behr M. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin Oral Investig 2018;22(8):2787–2797. DOI: 10.1007/s00784-018- 2365-6.
  45. Sudré JP, Salvio LA, Baroudi K. Influence of surface treatment of Lithium disilicate on roughness and bond strength. Int J Prosthodont 2020;33(2):212–216. DOI: 10.11607/ijp.6453.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.