Citation Information :
Nelluri VV, Gedela RK, Kandathilparambil MR. Influence of Surface Modification on Corrosion Behavior of the Implant Grade Titanium Alloy Ti-6Al-4V, in Simulated Body Fluid: An In Vitro Study. Int J Prosthodont Restor Dent 2020; 10 (3):102-111.
Aim and objective: To evaluate the influence of surface modification on corrosion behavior of the implant grade titanium alloy Ti-6Al-4V, in simulated body fluids (SBFs).
Materials and methods: Seventy disk-shaped samples of implant grade titanium alloy, Ti-6Al-4V were divided into seven groups of 10 each; UMS (unmodified surface/control group), HA (hydroxyapatite coated), LS (LASER sintered), LT (LASER textured), TG (combined chemical and thermal treated), HT850 (oxidized state), and HT1050 (oxidized state) were subjected to corrosion tests, electrochemical impedance, and cyclic polarization tests using GAMRY Potentiostat in SBF. Paired t-test, one-way analysis of variance (ANOVA) test, and Tukey honestly significant difference (HSD) test (p = 0.05).
Results: Polarization resistance (Rp) was increased in TG (1,800 ± 10.54 kΩ) with respect to UMS (control group) (1,249 ± 11.25 kΩ) and HA (1,250 ± 8.65 kΩ), further reduced in HT850 (780.00 ± 11.54 kΩ), LT (127 ± 5.37 kΩ), LS (60 ± 18.26 kΩ), and HT1050 (0.00 ± 0.00 kΩ) being lowest at 144 hours. Their mean comparisons were statistically significant except in HT1050 (p = 0.05). Cyclic polarization curves showed hysteresis loops in all the samples (UMS, HA, LS, LT, HT850, and HT1050) indicating susceptibility to localized corrosion (pitting and crevice corrosion) except in the TG sample, which showed forward scan retracing the reverse scan; they showed significantly improved resistance against pitting in TG followed by LS, HA, LT, and HT850 compared to UMS (control) except HT1050 (p = 0.05).
Conclusion: Combined chemical and thermal treatment of titanium alloy showed greater corrosion resistance and minimal susceptibility to localized corrosion (pitting and crevice corrosion) than the unmodified surface.
Williams DF, Black J, Doherty PJ. Consensus report of second conference on definitions in biomaterials. Biomaterial-Tissue Interfaces Doherty PJ, Williams RL, Williams DF, et al., ed., vol. 10, Amsterdam, The Netherlands: Elsevier; 1992. pp. 525–533.
Williams DF, ed. Definitions in biomaterials-Proceedings of a consensus conference of the European Society Biomaterials, vol. 4, New York, NY, USA: Elsevier; 1987.
Brunette DM, Tengvall P, Textor M, et al., ed. Titanium in medicine. Heidelberg, Germany: Springer; 2001.
Gilbert JL, Mali S. Medical implant corrosion: Electrochemistry at metallic biomaterial surfaces. In: Degradation of implant materials Eliaz N, ed., ch. 1, New York, NY, USA: Springer; 2012. pp. 1–28.
Gepreel MAH, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater 2013;20:407–415. DOI: 10.1016/j.jmbbm.2012.11.014.
Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials 1999;20(7):631–637. DOI: 10.1016/S0142-9612(98)00217-8.
Khan MA, Williams RL, Williams DF. Conjoint corrosion and wear in titanium alloys. Biomaterials 1999;20(8):765–772. DOI: 10.1016/S0142-9612(98)00229-4.
Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 2007;18(5):725–751. DOI: 10.1007/s10856-006-0016-y.
Ducheyne P. In-vitro corrosion study of porous metal fibre coatings for bone ingrowth. Biomaterials 1983;4(3):185–191. DOI: 10.1016/0142-9612(83)90008-X.
Gotfredsen K, Wennerberg A, Johansson C, et al. Anchorage of TiCV blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 1995;29(10):1223–1231. DOI: 10.1002/jbm.820291009.
Piattelli A, Manzon L, Scarano A, et al. Histologic and histomorphometric analysis of the bone response to machined and sand blasted titanium implants: an experimental study in rabbits. Int J Oral Maxillofac Implants 1998;13(6):805–810. DOI: 10.11607/prd. 5139.
Lauer G, Wiedmann-AI-Ahmad M, Otten JE, et al. The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillary osteoblast-like cells in vitro. Biomaterials 2001;22(20):2799–2809. DOI: 10.1016/S0142-9612(01)00024-2.
Li D, Liu B, Wu J, et al. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study. Implant Dent 2001;10(2):132–138. DOI: 10.1097/00008505-200104000-00010.
Di Carmine M, Toto P, Feliciani C, et al. Spreading of epithelial cells on machined and sandblasted titanium surfaces: an in-vitro study. J Periodontal 2003;74(3):289–295. DOI: 10.1902/jop.2003. 74.3.289.
Zreiqat H, Akin FA, Howlett CR, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res 2003;64(1):105–113. DOI: 10.1002/jbm.a.10376.
Garcia-Alonso MC, Saldana L, Valles G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidized Ti6AI4V alloy. Biomaterials 2003;24(1):19–26. DOI: 10.1016/S0142-9612(02)00237-5.
Laing PG. Compatibility of biomaterials. Orthop Clin North Am 1973;4:249–273.
Sarkar NK, Marshall GW, Reener EH. In-vivo and in-vitro corrosion products of dental amalgam. J Dental Res 1975;54(5):1031–1038. DOI: 10.1177/00220345750540050501.
Sarkar NK, Fuys RA, Stanford JW. The chloride corrosion of low-gold casting alloys. J Dental Res 1979;58(2):568–575. DOI: 10.1177/00220345790580020501.
Strub JR, Eyer CS, Sarkar NK. Heat treatment, microstructure and corrosion of low-gold casting alloy. J Oral Rehabilitation 1986;13(6):521–528. DOI: 10.1111/j.1365-2842.1986. tb00675.x.
Lemaitre L, Moors M, Vanpeteghem AP. A mechanistic study of the electrochemical corrosion of the gamma2 phase in dental amalgams: evaluation of the measurements. J Oral Rehabil 1989;16(6):537–542. DOI: 10.1111/j.1365-2842.1989.tb01375.x.
Chern Lin JH, Moser JB, Taira M, et al. Co-Ti and Ni-Ti systems: corrosion and micro hardness. J Oral Rehabil 1990;17(4):383–393. DOI: 10.1111/j.1365-2842.1990.tb00023.x.
Mueller HJ. Tarnish and corrosion of dental alloys. Metal handbook, vol. 13, Corrosion 9th ed., Metals Park, OH: ASM Int; 1987. pp 1336–1366.
Kokubo T, Ito S, Huang ZT, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. Bio Mater Res 1990;24(6):721–734. DOI: 10.1002/jbm.820240607.
Filgueriras MR, Torre GL, Hench LL. Solution effects on the surface reaction of a bioactive glass. J Bio Mater Res 1993;27(4):445–453. DOI: 10.1002/jbm.820270405.
Kim HM, Kishimoto K, Miyaji F, et al. Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. J Mater Sci Mater Med 2000;11(7):421–426. DOI: 10.1023/A:1008935924847.
Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy; ISO5832-3:2016; International Organization for Standardization: Geneva, Switzerland, 2016.
Mc Cafferty E. Introduction to corrosion science. NewYork: Springer; 2010.
Scully JR. Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 2000;56(2):199–218. DOI: 10.5006/1.3280536.
ASTM. G106.89: practice for verification of algorithm and equipment for electrochemical impedance measurements. Annual Book of ASTM Standards, vol. 03, issue 02, West Conshohocken, PA: ASTM Int; 2015.
ASTM G61.68: Standard Test Method, West Conshohocken, PA: ASTM Int., 2014.
ASTM F2129.15: Standard Test Method, West Conshohocken, PA: ASTM Int., 2015.
Silverman DC. Practical corrosion prediction using electrochemical techniques. John Wiley and Sons; 2011.
Eliaz N. Corrosion of metallic biomaterials: a review. Materials 2019;12(3):407. DOI: 10.3390/ma12030407.
Esmailzadeh S, Aliofkhazraei M, Sarlak H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Protect Met Physi Chemis Surf 2018;54(5):976–989. DOI: 10.1134/S207020511805026X.
Wang B, Liu J, Yin M, et al. Comparison of corrosion behavior of Al-Mn and Al-Mg alloys in chloride aqueous solution. Mater Corros 2016;67(1):51–59. DOI: 10.1002/maco.201408211.
Khamaj JA. Cyclic polarization analysis of corrosion behavior of ceramic coating on 6061 Al/SiCp composite for marine applications. Prot Met Phys Chem Surf 2016;52(5):886–889. DOI: 10.1134/S2070205116050117.
Kelly RG, Scully JR, Shoesmith D, et al. Electrochemical techniques in corrosion science and engineering. New York: CRC Press; 2002.
Silverman DC. Tutorial on cyclic potentiodynamic polarization technique. Corrosion 1998;1:21.
Li L, Qu Q, Bai W, et al. Effect of NaCl on the corrosion of cold rolled steel in peracetic acid solution. Int J Electrochem Sci 2012;7(4):3773.
Kuhn AT, Neufeld P, Rae T. Synthetic environments for testing of metallic biomaterials. The use of synthetic environments for corrosion testing, ASTM STP 970. Francis PE, Lee TS, ed., Philadelphia, PA, USA: ASTM; 1988. pp. 79–95.
Revie R, Uhlig HH. Corrosion and corrosion control: An introduction to corrosion science and engineering. 4th ed., Hoboken, NJ, USA: John Wiley & Sons; 2008. p. 84.
Aksakal B, Yildirim ÖS, Gul H. Metallurgical failure analysis of various implant materials used in orthopedic applications. J Fail Anal Prev 2004;4(3):17–23. DOI: 10.1007/s11668-996-0007-9.
Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl 2017;77(1):1261–1274. DOI: 10.1016/j.msec.2017.04.102.
Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clinic Oral Implants Res 2009;20:172–184. DOI: 10.1111/j.1600-0501.2009.01775.x.
Queiroz TP, de Molon RS, Souza FÁ, et al. In vivo evaluation of cp Ti implants with modified surfaces by laser beam with and without hydroxyapatite chemical deposition and without and with thermal treatment: topographic characterization and histomorphometric analysis in rabbits. Clin Oral Invest 2017;21(2):685–699. DOI: 10.1007/s00784-016-1936-7.
TianY ChenC, Li S, Huo Q. Research progress on laser surface modification of titanium alloys. Appl Surf Sci 2005;242(1-2):177–184. DOI: 10.1016/j.apsusc.2004.08.011.
del Pino AP, Serra P, Morenza J. Oxidation of titanium through Nd: YAG laser irradiation. Appl Sur Sci 2002;197:887–890. DOI: 10.1016/S0169-4332(02)00447-6.
Yue T, Yu J, MeiZ, et al. Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Mater Lett 2002;52(3):206–212. DOI: 10.1016/S0167-577X(01)00395-0.
Spiekermann H. Implantology, in color atlas of dental medicine Rateitschak KH Wolf HF, ed., New York: THIEME Medical Publishers Inc; 1995. pp. 12–16.
Bearinger JP, The Electrochemistry of titanium/titanium oxide in the biological environment. Ph.D. thesis, Northwestern University, Evanston, IL, USA, 2000.
BearingerJP OrmecCA, Gilbert JL. In situ imaging and impedance measurements of titanium surfaces using AFM and SPIS. Biomaterials 2003;24(11):1837–1852. DOI: 10.1016/S0142-9612(02)00547-1.